精英家教網 > 高中數學 > 題目詳情
(2012•臺州模擬)已知數列{an}滿足遞推式an=2an-1+1(n≥2),其中a4=15.
(Ⅰ)求證:數列{an+1}是等比數列,并求數列{an}的通項公式;
(Ⅱ)已知數列{bn}有bn=
nan+1
,求數列{bn}的前n項和Sn
分析:(I)由已知中an=2an-1+1(n≥2),兩邊同加一,易得數列{an+1}是等比數列,結合a4=15,求出數列{an+1}的首項,進而可求數列{an+1}的通項公式,進而可得數列{an}的通項公式;
(Ⅱ)根據數列{bn}中bn=
n
an+1
是等差數列的等比數列相乘的形式,故采用錯位相減法可求數列{bn}的前n項和Sn
解答:解:(1)∵當n≥2時,an=2an-1+1,
∴an+1=2(an-1+1),
即數列{an+1}是一個公比為2的等比數列
又∵a4+1=16,故a1+1=2
故an+1=2n,故an=2n-1
(2)∵bn=
n
an+1
=
n
2n

∴Sn=
1
2 
+
2
22
+
3
23
+…+
n
2n
…①
1
2
Sn=
1
22 
+
2
23
+…+
n-1
2n
+
n
2n+1
…②
①-②得
1
2
Sn=
1
2
+
1
22 
+
1
23
+…+
1
2n
-
n
2n+1
=1-
1
2n
-
n
2n+1
=1-
n+2
2n+1

∴Sn=2-
n+2
2n
點評:本題考查的知識點是數列的求和,等比數列的通項公式,其中(I)的關鍵是將已知兩邊同加一,進而判斷出數列{an+1}的公比,而(II)的關鍵是分析數列的通項公式,選擇適當的方法求和.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•臺州模擬)已知函數f(x)=lnx-
1
2
ax2-2x(a<0)
(Ⅰ)若函數f(x)存在單調遞減區(qū)間,求a的取值范圍;
(Ⅱ)若a=-
1
2
且關于x的方程f(x)=-
1
2
x+b在[1,4]上恰有兩個不相等的實數根,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•臺州模擬)在平面直角坐標系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點P(x1,y1),Q(x2,y2)之間的“折線距離”.則原點O(0,0)與直線2x+y-
5
=0
上一點P(x,y)的“折線距離”的最小值是
5
2
5
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•臺州模擬)已知函數f(x)=log2(ax2+2x-3a).
(Ⅰ)當a=-1時,求該函數的定義域和值域;
(Ⅱ)如果f(x)≥1在區(qū)間[2,3]上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•臺州模擬)在邊長為6的等邊△ABC中,點M滿足
BM
=2
MA
,則
CM
CB
等于
24
24

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•臺州模擬)設|
a
|=|
b
|=|
a
+
b
|≠0
,那么
a
-
b
b
的夾角為( 。

查看答案和解析>>

同步練習冊答案