【題目】已知過點且離心率為的橢圓的中心在原點,焦點在軸上.
(1)求橢圓的方程;
(2)設(shè)點是橢圓的左準線與軸的交點,過點的直線與橢圓相交于兩點,記橢圓的左,右焦點分別為,上下兩個頂點分別為.當線段的中點落在四邊形內(nèi)(包括邊界)時,求直線斜率的取值范圍.
【答案】(1);(2)
【解析】
試題分析:(1)設(shè)橢圓的方程,用待定系數(shù)法求出的值;(2)解決直線和橢圓的綜合問題時需注意:第一步,根據(jù)題意設(shè)直線方程,有的題設(shè)條件已知點,而斜率未知;有的題設(shè)條件已知斜率,點不定,可由點斜式設(shè)直線方程.第二步,聯(lián)立方程,把所設(shè)直線方程與橢圓的方程聯(lián)立,消去一個元,得到一個一元二次方程.第三步,求解判別式,計算一元二次方程根.第四步,根據(jù)題設(shè)條件求解問題中結(jié)論.
試題解析:(1)依題意,設(shè)橢圓的方程為(),焦距為,
由題設(shè)條件知,,即,所以,由橢圓過點,則有,解得,,故橢圓的方程為.·······7分
(2)橢圓的左準線方程為,所以點的坐標為(-4,0),
顯然直線的斜率存在,所以直線的方程為.
設(shè)點的坐標分別為,線段的
中點為,
由
得 , ① ·······9分
由,
解得 , ② ·······11分
因為是方程①的兩根,所以,
于是, ·······12分
∵,所以點不可能在軸的右邊.
又直線方程分別為,
所以點在正方形內(nèi)(包括邊界)的充要條件為
,即 ·······14分
解得,此時②也成立.故直線斜率的取值范圍是. ······16分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品廠定期購買面粉.已知該廠每天需用面粉6t,每噸面粉的價格為1800元,面粉的保管等其他費用為平均每噸每天3元,購面粉每次需支付運費900元.
(1)求該廠多少天購買一次面粉,才能使平均每天所支付的總費用最少?
(2)若提供面粉的公司規(guī)定:當一次購買面粉不少于210t時,其價格可享受9折優(yōu)惠(即原價的90%),問該廠是否考慮利用此優(yōu)惠條件?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項公式.
(Ⅱ)設(shè)數(shù)列{bn}的前n項和為Tn,且Tn+=λ(λ為常數(shù)),令cn=b2n(n∈N*).求數(shù)列{cn}的前n項和Rn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知直線的參數(shù)方程是(為參數(shù)),曲線的極坐標方程是.
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)設(shè)直線與曲線相交于,兩點,點為的中點,點的極坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),則b的取值范圍為( )
A.
B.(2﹣ ,2+ )
C.[1,3]
D.(1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點, .
(1)求橢圓的方程;
(2)過點作直線與橢圓交于兩點,連接(為坐標原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系內(nèi),動點與兩定點, 連線的斜率之積為.
(1)求動點的軌跡的方程;
(2)設(shè)點, 是軌跡上相異的兩點.
(Ⅰ)過點, 分別作拋物線的切線, , 與兩條切線相交于點,證明: ;
(Ⅱ)若直線與直線的斜率之積為,證明: 為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,點E、F分別在邊AB、DC上,M為AD的中點,且 =0,則△MEF的面積的取值范圍為( )
A.
B.[1,2]
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com