【題目】極坐標(biāo)系中橢圓C的方程為,以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長(zhǎng)度.

)求該橢圓的直角標(biāo)方程,若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;

)若橢圓的兩條弦交于點(diǎn),且直線的傾斜角互補(bǔ),求證:

【答案】(Ⅰ);(Ⅱ)證明見解析

【解析】

(Ⅰ)將橢圓的極坐標(biāo)方程化為直角坐標(biāo)方程,即可設(shè),,,進(jìn)而求解;

(Ⅱ)設(shè)直線的傾斜角為,直線的傾斜角為,,將直線的參數(shù)方程代入橢圓的直角坐標(biāo)方程中,由韋達(dá)定理可得,設(shè)對(duì)應(yīng)參數(shù)分別為、,,同理可求得,即可得證.

()由已知,,即,

所以該橢圓的直角坐標(biāo)方程為,

設(shè),,

所以,

所以的取值范圍是

(Ⅱ)證明:設(shè)直線的傾斜角為,直線的傾斜角為,

則直線的參數(shù)方程為為參數(shù)),

代入,

,

設(shè)對(duì)應(yīng)參數(shù)分別為、,則,

同理,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)法定勞動(dòng)年齡是周歲至退休年齡(退休年齡一般指男周歲,女干部身份周歲,女工人周歲).為更好了解我國(guó)勞動(dòng)年齡人口變化情況,有關(guān)專家統(tǒng)計(jì)了年我國(guó)勞動(dòng)年齡人口和周歲人口數(shù)量(含預(yù)測(cè)),得到下表:

其中年勞動(dòng)年齡人口是億人,則下列結(jié)論不正確的是(

A.年勞動(dòng)年齡人口比年減少了萬人以上

B.周歲人口數(shù)的平均數(shù)是

C.年,周歲人口數(shù)每年的減少率都小于同年勞動(dòng)人口每年的減少率

D.年這周歲人口數(shù)的方差小于這年勞動(dòng)人口數(shù)的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示多面體中,AD⊥平面PDC,四邊形ABCD為平行四邊形,點(diǎn)E,F分別為AD,BP的中點(diǎn),AD3AP3,PC

1)求證:EF//平面PDC;

2)若∠CDP120°,求二面角ECPD的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中e是自然對(duì)數(shù)的底數(shù)

1)若,求的最小值;

2)記fx)的圖象在處的切線的縱截距為,求的極值;

3)若2個(gè)零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求證:;

2)若不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).

1)討論的極值;

2)當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,證明:對(duì)任意,存在,使得;

2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在多邊形中,四邊形為等腰梯形,,,,四邊形為直角梯形,.以為折痕把等腰梯形折起,使得平面平面,如圖2所示.

1)證明:平面

2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求零點(diǎn)處的切線方程;

(Ⅱ)若有兩個(gè)零點(diǎn),求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案