【題目】設(shè)函數(shù),.
(1)若.
①求實數(shù)的值;
②若,證明為極值點;
(2)求實數(shù)的取值范圍,使得對任意的恒有成立.(注:為自然對數(shù)的底數(shù))
【答案】(1)①或.②見解析(2)
【解析】
(1)①求出導(dǎo)函數(shù),根據(jù)即可得解,②,所以,根據(jù)導(dǎo)函數(shù)的零點,結(jié)合函數(shù)單調(diào)性即可得極值點;
(2)根據(jù)函數(shù)單調(diào)性分類討論求解參數(shù)的取值范圍.
解:(1)求導(dǎo)得
因為是的極值點,所以,
解得或.
(2)因為,所以.
所以,(),
記,則,
所以在上單調(diào)遞增,
而,,
又在上單調(diào)遞增,
所以存在唯一使,
所以時,,,
即時,,單調(diào)遞增;
而時,,,
所以時,,
所以為的極小值點.
(2)①當(dāng),對于任意的實數(shù),恒有成立.
②當(dāng)時,由題意,首先有,
解得,
由(1)知,
令,則,,
且.
又在內(nèi)單調(diào)遞增,所以函數(shù)在內(nèi)有唯一的零點,記此零點為,則,.
從而,當(dāng)時,;
當(dāng)時,;
當(dāng)時,.
即在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.
所以要使對恒成立,只要
①②成立.
由知③
將③代入①得又,
注意到函數(shù)在內(nèi)單調(diào)遞增,故.
再由③以及函數(shù)在內(nèi)單調(diào)遞增,可得.
由②解得,
所以,
綜上,的取值范圍為.
(2)解法2:
①當(dāng),對于任意的實數(shù),恒有成立.
②當(dāng)時,,令,
以下分四種情況:
(一),,所以在上遞增,故
,所以,無解
(二),,在上遞增,故
所以,所以在上遞增,故
由(一)可知,無解
(三),,,
,,
且在上遞增,所以存在唯一的,使得
且,在上的正負(fù)性如下
+ | 0 | - | 0 | + | |
增 | 極大 | 減 | 極小 | 增 |
故且,得且(*),
∵代入(*)式,得
函數(shù)在內(nèi)單調(diào)遞增,故.
再由函數(shù)在內(nèi)單調(diào)遞增,可得.
(四),存在 ,不符合條件.
綜上,的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·開封一模]已知數(shù)列中,,,利用下面程序框圖計算該數(shù)列的項時,若輸出的是2,則判斷框內(nèi)的條件不可能是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若,,且.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)(Ⅰ)中曲線的左、右頂點分別為、,過點的直線與曲線交于兩點,(不與,重合).若直線與直線相交于點,試判斷點,,是否共線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在區(qū)間上單調(diào)遞減,試探究函數(shù)在區(qū)間上的單調(diào)性;
(2)證明:方程在上有且僅有兩解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列,,滿足:,,.
(1)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列;
(2)若數(shù)列,都是等差數(shù)列,求證:數(shù)列從第二項起為等差數(shù)列;
(3)若數(shù)列是等差數(shù)列,試判斷當(dāng)時,數(shù)列是否成等差數(shù)列?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目, 兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊第六位選手的成績沒有給出,并且告知大家隊的平均分比隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得“晉級”.
(1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊第六位選手的成績;
(2)主持人從隊所有選手成績中隨機(jī)抽2個,求至少有一個為“晉級”的概率;
(3)主持人從兩隊所有選手成績分別隨機(jī)抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣a+1|.
(1)當(dāng)a=4時,求解不等式f(x)≥8;
(2)已知關(guān)于x的不等式f(x)在R上恒成立,求參數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖如示的多面體中,平面平面,四邊形是邊長為的正方形, ∥,且.
(1)若分別是中點,求證: ∥平面
(2)求此多面體的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是( )
A. 2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加
B. 2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍
C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍
D. 2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com