已知f(x)=x3+3x2+a(a為常數(shù))在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?
f′(x)=3x2+6x,
令f′(x)=0,得3x(x+2)=0⇒x=0,x=-2.
當(dāng)0≤x≤3,或-3≤x≤-2時(shí),f′(x)≥0,f(x)單調(diào)遞增;
當(dāng)-2<x<0時(shí),f'(x)<0,f(x)單調(diào)遞減,
則最小值為f(-3)或f(0),
而f(-3)=(-3)3+3×(-3)2+a=a,f(0)=a,
又最小值為3,∴a=3,
∴f(x)=x3+3x2+3,其最大值為f(-2)或f(3),
∵f(-2)=(-2)3+3×(-2)2+3=7,f(3)=33+3×32+3=57,
故f(x)在[-3,3]上的最大值為57.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線y=log2x在點(diǎn)(1,0)處的切線與坐標(biāo)軸所圍三角形的面積等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若x∈[0,+∞),則下列不等式恒成立的是( 。
A.ex≤1+x+x2B.
1
1+x
≤1-
1
2
x+
1
4
x2
C.cosx≥1-
1
2
x2
D.ln(1+x)≥x-
1
8
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-
1
2
x2+bx+c
,且f(x)在x=1處取得極值.
(1)求b的值;
(2)若當(dāng)x∈[1,2]時(shí),f(x)<c2恒成立,求c的取值范圍;
(3)c為何值時(shí),曲線y=f(x)與x軸僅有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一出租車每小時(shí)耗油的費(fèi)用與其車速的立方成正比,當(dāng)車速為80km/h時(shí),該車耗油的費(fèi)用為8元/h,其他費(fèi)用為12元/h.甲乙兩地的公路里程為160km,在不考慮其他因素的前提下,為了使該車開往乙地的總費(fèi)用最低,該車的車速應(yīng)當(dāng)確定為多少公里/小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=alnx+x2(a為實(shí)常數(shù)).
(1)當(dāng)a=-4時(shí),求函數(shù)f(x)在[1,e]上的最大值及相應(yīng)的x值;
(2)當(dāng)x∈[1,e]時(shí),討論方程f(x)=0根的個(gè)數(shù).
(3)若a>0,且對任意的x1,x2∈[1,e],都有|f(x1)-f(x2)|≤|
1
x1
-
1
x2
|
,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=ax3-3x+1對x∈(0,1]總有f(x)≥0成立.則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某汽車生產(chǎn)企業(yè)上年度生產(chǎn)一品牌汽車的投入成本為10萬元/輛,出廠價(jià)為13萬元/輛,年銷售量為5000輛.本年度為適應(yīng)市場需求,計(jì)劃提高產(chǎn)品檔次,適當(dāng)增加投入成本,若每輛車投入成本增加的比例為x(0<x<1),則出廠價(jià)相應(yīng)提高的比例為0.7x,年銷售量也相應(yīng)增加.已知年利潤=(每輛車的出廠價(jià)-每輛車的投入成本)×年銷售量.
(Ⅰ)若年銷售量增加的比例為0.4x,為使本年度的年利潤比上年度有所增加,則投入成本增加
的比例x應(yīng)在什么范圍內(nèi)?
(Ⅱ)年銷售量關(guān)于x的函數(shù)為y=3240(-x2+2x+
5
3
)
,則當(dāng)x為何值時(shí),本年度的年利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

由曲線與直線圍成的曲邊梯形的面積為(   )
A.B.C.D.16

查看答案和解析>>

同步練習(xí)冊答案