已知函數(shù)f(x)=.
(1)確定y=f(x)在(0,+∞)上的單調(diào)性;
(2)若a>0,函數(shù)h(x)=xf(x)-x-ax2在(0,2)上有極值,求實(shí)數(shù)a的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的極值;
(2)定義:若函數(shù)在區(qū)間上的取值范圍為,則稱區(qū)間為函數(shù)的“域同區(qū)間”.試問(wèn)函數(shù)在上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),函數(shù)的導(dǎo)函數(shù),且,其中為自然對(duì)數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式成立,試求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),對(duì)于,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)記函數(shù)的圖象為曲線,設(shè)點(diǎn)是曲線上的不同兩點(diǎn).如果在曲線上存在點(diǎn),使得:①;②曲線在點(diǎn)處的切線平行于直線,則稱函數(shù)存在“中值相依切線”,試問(wèn):函數(shù)是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ln(x+1)-x2-x.
(1)若關(guān)于x的方程f(x)=-x+b在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(2)證明:對(duì)任意的正整數(shù)n,不等式2+++…+ >ln(n+1)都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù),其中為實(shí)常數(shù)。
(1)討論的單調(diào)性;
(2)不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若,設(shè),。是否存在實(shí)常數(shù),既使又使對(duì)一切恒成立?若存在,試找出的一個(gè)值,并證明;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=a(x-5)2+6ln x,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)若函數(shù)在處取得極值,求實(shí)數(shù)的值;
(2)若,求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com