【題目】一個(gè)不透明的袋子中有大小形狀完全相同的個(gè)乒乓球,乒乓球上分別印有數(shù)字,小明和小芳分別從袋子中摸出一個(gè)球(不放回),看誰摸出來的球上的數(shù)字大.小明先摸出一球說:“我不能肯定我們兩人的球上誰的數(shù)字大.”然后小芳摸出一球說:“我也不能肯定我們兩人的球上誰的數(shù)字大.”那么小芳摸出來的球上的數(shù)字是______.

【答案】

【解析】

由于小明先摸出一球說:“我不能肯定我們兩人的球上誰的數(shù)字大.”,即可確定小明摸出來的可能是,由于小芳也不能確定誰大,從而得到小芳摸出來的球上的數(shù)字。

由于兩人都不能肯定他們兩人的球上誰的數(shù)字大,說明小明摸出來的可能是,不可能是,而小芳也就知道了小明摸出來的可能是,小芳也說不能肯定兩人的球上誰的數(shù)字大,說明小芳摸出來的只能是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的華為手機(jī)專賣店對該市市民使用華為手機(jī)的情況進(jìn)行調(diào)查.在使用華為手機(jī)的用戶中,隨機(jī)抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻率分布直方圖如圖:

(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)的估計(jì)值(均精確到個(gè)位);

(2)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加華為手機(jī)宣傳活動(dòng),現(xiàn)從這20人中,隨機(jī)選取2人各贈(zèng)送一部華為手機(jī),求這2名市民年齡都在內(nèi)的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),已知不單調(diào),且其導(dǎo)函數(shù)存在唯一零點(diǎn).

(1)求的取值范圍;

(2)若集合,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.

(Ⅰ)求AB,(UA)∪(UB);

(Ⅱ)設(shè)集合C={x|m+1<x<2m-1},若BC=C,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).

I)應(yīng)收集多少位男生樣本數(shù)據(jù)?

II)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,,,試估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí)的概率;

(Ⅲ)在樣本數(shù)據(jù)中,有165位男生的每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí)請完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有%的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.

男生

女士

總計(jì)

每周平均體育運(yùn)動(dòng)時(shí)

間不超過4小時(shí)

每周平均體育運(yùn)動(dòng)時(shí)

間超過4小時(shí)

總計(jì)

附:

0.10

0.05

0.010

0.005

k

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的選項(xiàng)是( )

A. 為真命題,則為真命題 B. ,使得 C. “平面向量的夾角為鈍角”的充分不必要條件是“ D. 在銳角中,必有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年俄羅斯世界杯將于2018年6月14日至7月15日在俄羅斯境內(nèi)座城市的座球場內(nèi)舉行,共有支球隊(duì)參加比賽,其中歐洲有支球隊(duì)參賽,中北美球隊(duì)有支球隊(duì)參賽,亞洲、南美洲、非洲各有支球隊(duì)參賽,所有參賽球隊(duì)被平均分入個(gè)小組.已知小組的支隊(duì)伍來自不同的大洲,東道主俄羅斯(俄羅斯屬于歐洲球隊(duì))和墨西哥(墨西哥屬于中北美球隊(duì))在小組中,那么南美洲球隊(duì)巴西隊(duì)在小組的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖4,在四棱錐中,底面,底面為直角梯形,,過作平面分別交線段于點(diǎn).

(1)證明:;

(2)若直線與平面所成的線面角的正切值為,則當(dāng)點(diǎn)在線段的何處時(shí),直線與平面所成角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),其中為直線的傾斜角.以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),求兩點(diǎn)間的距離的值.

查看答案和解析>>

同步練習(xí)冊答案