【題目】如圖,A、B為橢圓C:短軸的上、下頂點(diǎn),P為直線l:y=2上一動(dòng)點(diǎn),連接PA并延長(zhǎng)交橢圓于點(diǎn)M,連接PB交橢圓于點(diǎn)N,已知直線MA,MB的斜率之積恒為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線MN與x軸平行,求直線MN的方程;
(3)求四邊形AMBN面積的最大值,并求對(duì)應(yīng)的點(diǎn)P的坐標(biāo).
【答案】(1)(2)(3)四邊形AMBN面積的最大值為,對(duì)應(yīng)的點(diǎn)P的坐標(biāo)為(,2)
【解析】
(1)根據(jù)題意有A(0,1),B(0,﹣1),設(shè)M(x,y),根據(jù)直線MA,MB的斜率之積恒為,即求解.
(2)根據(jù)題意設(shè)M(m,n),則N(﹣m,n),,聯(lián)立求解,令求解.
(3)設(shè)P(t,2),t≠0,與橢圓聯(lián)立得,求得 的坐標(biāo),同理求得的坐標(biāo),然后由S四邊形AMBN求解.
(1)A(0,1),B(0,﹣1),設(shè)M(x,y),則
,
因此,橢圓C的標(biāo)準(zhǔn)方程為:;
(2)設(shè)M(m,n),則N(﹣m,n),
則,
聯(lián)立解得,所以,故直線MN的方程為:;
(3)設(shè)P(t,2),t≠0,
與橢圓聯(lián)立得解得或,,
同理或
所以S四邊形AMBN
令,則S四邊形AMBN,
,故在上遞減,
故,即,即時(shí),,
即S四邊形AMBN的最大值為
因此,四邊形AMBN面積的最大值為,對(duì)應(yīng)的點(diǎn)P的坐標(biāo)為(,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)若方程有兩個(gè)實(shí)數(shù)根,,且,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在貫徹中共中央、國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位在某市定點(diǎn)幫扶甲、乙兩村各50戶貧困戶為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo)x,將指標(biāo)x按照分成五組,得到如圖所示的頻率分布直方圖.
規(guī)定若,則認(rèn)定該戶為“絕對(duì)貧困戶”,否則認(rèn)定該戶為“相對(duì)貧困戶”,且當(dāng)時(shí),認(rèn)定該戶為“低收入戶”;當(dāng)時(shí),認(rèn)定該戶為“亟待幫助戶”,已知此次調(diào)查中甲村的“絕對(duì)貧困戶”占甲村貧困戶的24%.
(1)完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為絕對(duì)貧困戶數(shù)與村落有關(guān);
甲村 | 乙村 | 總計(jì) | |
絕對(duì)貧困戶 | |||
相對(duì)貧困戶 | |||
總計(jì) |
(2)若兩村“低收入戶”中乙村“低收入戶”占比為,兩村“亟待幫助戶”中乙村“亟待幫助戶”占比為,且乙村貧困指標(biāo)在上的戶數(shù)成等差數(shù)列,試估計(jì)乙村貧困指標(biāo)x的平均值.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)某省的高考改革方案,考生應(yīng)在3門(mén)理科學(xué)科(物理、化學(xué)、生物)和3門(mén)文科學(xué)科(歷史、政治、地理)的6門(mén)學(xué)科中選擇3門(mén)學(xué)科參加考試.根據(jù)以往統(tǒng)計(jì)資料,1位同學(xué)選擇生物的概率為0.5,選擇物理但不選擇生物的概率為0.2,考生選擇各門(mén)學(xué)科是相互獨(dú)立的.
(1)求1位考生至少選擇生物、物理兩門(mén)學(xué)科中的1門(mén)的概率;
(2)某校高二段400名學(xué)生中,選擇生物但不選擇物理的人數(shù)為140,求1位考生同時(shí)選擇生物、物理兩門(mén)學(xué)科的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓 的左右焦點(diǎn)分別為的、,離心率為;過(guò)拋物線焦點(diǎn)的直線交拋物線于、兩點(diǎn),當(dāng)時(shí), 點(diǎn)在軸上的射影為。連結(jié)并延長(zhǎng)分別交于、兩點(diǎn),連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2016年1月至2018年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)該折線圖,判斷下列結(jié)論:
(1)月接待游客量逐月增加;
(2)年接待游客量逐年增加;
(3)各年的月接待游客量高峰期大致在7,8月;
(4)各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn).
其中正確結(jié)論的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在無(wú)窮數(shù)列中,,記前項(xiàng)中的最大項(xiàng)為,最小項(xiàng)為,令.
(1)若的前項(xiàng)和滿足.
①求;
②是否存在正整數(shù)滿足?若存在,請(qǐng)求出這樣的,若不存在,請(qǐng)說(shuō)明理由.
(2)若數(shù)列是等比數(shù)列,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com