【題目】在多面體中,四邊形是正方形,平面平面,.

(1)求證:平面;

(2)在線段上是否存在點,使得平面與平面所成的銳二面角的大小為,若存在,求出的值;若不存在,說明理由.

【答案】(1)證明見解析;(2)答案見解析.

【解析】

(1)由面面垂直的性質定理證明線面垂直即可;

(2)在平面DAE內,過DAD的垂線DH,以點D為坐標原點,DA,DC,DH所在直線分別為x軸,y軸,z軸建立空間直角坐標系,利用平面FAG的法向量和平面EAD的法向量求二面角的余弦值即可確定線段上是否存在點.

(1)∵平面ADE⊥平面ABCD,平面ADE平面ABCD=AD

正方形中CDAD,∴CD⊥平面ADE.

(2)由(1)知平面ABCD⊥平面AED.

在平面DAE內,過DAD的垂線DH,則DH⊥平面ABCD

以點D為坐標原點,DA,DC,DH所在直線分別為x軸,y軸,z軸建立空間直角坐標系,

,

,,

,則.

設平面FAG的一個法向量,則

,即

可得:,

易知平面EAD的一個法向量,

由已如得.

化簡可得:,即.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,兩個焦點與短軸一個頂點構成等腰直角三角形,過點且與x軸不重合的直線l與橢圓交于M,N不同的兩點.

(Ⅰ)求橢圓P的方程;

(Ⅱ)當AM與MN垂直時,求AM的長;

(Ⅲ)若過點P且平行于AM的直線交直線于點Q,求證:直線NQ恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)ax(a,b∈Z),曲線yf(x)在點(2,f(2))處的切線方

程為y3.

(1)f(x)的解析式;

(2)證明:曲線yf(x)上任一點的切線與直線x1和直線yx所圍三角形的面積為定值,

并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,過且斜率為的直線交于兩點,

(1)求的方程;

(2)求過點,且與的準線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.

(1)求的直角坐標方程和的直角坐標;

(2)設交于兩點,線段的中點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若上單調遞減,求的取值范圍;

(2)若處取得極值,判斷當時,存在幾條切線與直線平行,請說明理由;

(3)若有兩個極值點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.

1)求橢圓C的標準方程;

2)設F為橢圓C的左焦點,T為直線上任意一點,過FTF的垂線交橢圓C于點PQ.

i)證明:OT平分線段PQ(其中O為坐標原點);

ii)當最小時,求點T的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.

(1)求的直角坐標方程和的直角坐標;

(2)設交于兩點,線段的中點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 .

(1)證明: 上單調遞減;

(2)若,證明: .

查看答案和解析>>

同步練習冊答案