精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,(a,bR)為奇函數.

1)求b值;

2)當a=2時,存在x0[1,4]使得不等式fx0t成立,求實數t的取值范圍;

3)當a≥1時,求證:函數gx=f2x)﹣ccR)在區(qū)間(﹣,﹣1]上至多有一個零點.

【答案】1b=0;(2t≥2;(3)證明見解析

【解析】

1)根據函數奇偶性的定義和性質建立方程關系即可得到結論;

2)根據函數單調性和最值的關系進行求解即可;

3)根據函數單調性的定義先判斷函數的單調性,利用函數單調性和函數零點之間的關系進行證明.

解:(1函數為奇函數,

,即

,即;

2)當時,,

函數,,均單調遞增,

函數,單調遞增,

時,

存在,使得不等式成立,

;

3)證明:,

,,

,

,,

,即

,又,

,即

函數,單調遞減,

,結合函數圖象知函數,上至多有一個零點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:Cx=若不建隔熱層,每年能源消耗費用為8萬元。設fx)為隔熱層建造費用與20年的能源消耗費用之和。

)求k的值及f(x)的表達式。

)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數方程為為參數),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.

1)求曲線C的極坐標方程;

2)過點,傾斜角為的直線l與曲線C相交于M,N兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P-ABCD中,底面ABCD為直角梯形,平面ABCD,且.

1)求證:平面PBD;

(2)若PB與平面ABCD所成的角為,求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1所示,在等腰梯形ABCD中,,,垂足為E,沿EC折起到的位置,如圖2所示,使平面平面ABCE.

1)連結BE,證明:平面

2)在棱上是否存在點G,使得平面,若存在,直接指出點G的位置不必說明理由,并求出此時三棱錐的體積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】自由購是一種通過自助結算購物的形式.某大型超市為調查顧客自由購的使用情況,隨機抽取了100人,調查結果整理如下:

20以下

[20,30

[3040

[40,50

[50,60

[6070]

70以上

使用人數

3

12

17

6

4

2

0

未使用人數

0

0

3

14

36

3

0

1)現隨機抽取1名顧客,試估計該顧客年齡在[3050)且未使用自由購的概率;

2)從被抽取的年齡在[5070]使用的自由購顧客中,隨機抽取2人進一步了解情況,求這2人年齡都在[50,60)的概率;

3)為鼓勵顧客使用自由購,該超市擬對使用自由購顧客贈送1個環(huán)保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環(huán)保購物袋?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若動點到定點與定直線的距離之和為

1)求點的軌跡方程,并在答題卡所示位置畫出方程的曲線草圖;

2)(理)記(1)得到的軌跡為曲線,問曲線上關于點對稱的不同點有幾對?請說明理由.

3)(文)記(1)得到的軌跡為曲線,若曲線上恰有三對不同的點關于點對稱,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某人上午7時乘船出發(fā),以勻速海里/小時港前往相距50海里的港,然后乘汽車以勻速千米/小時()自港前往相距千米的市,計劃當天下午4到9時到達市.設乘船和汽車的所要的時間分別為、小時,如果所需要的經費 (單位:元)

(1)試用含有、的代數式表示

(2)要使得所需經費最少,求的值,并求出此時的費用.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,曲線由兩個橢圓和橢圓組成,當成等比數列時,稱曲線貓眼曲線”.

1)若貓眼曲線過點,且的公比為,求貓眼曲線的方程;

2)對于題(1)中的求貓眼曲線,任作斜率為且不過原點的直線與該曲線相交,交橢圓所得弦的中點為M,交橢圓所得弦的中點為N,求證:為與無關的定值;

3)若斜率為的直線為橢圓的切線,且交橢圓于點,為橢圓上的任意一點(點與點不重合),求面積的最大值.

查看答案和解析>>

同步練習冊答案