在空間直角坐標系中,已知點A(1,0,2),B(1,-3,1),則|AB|=
 
考點:空間兩點間的距離公式
專題:空間位置關(guān)系與距離
分析:利用空間兩點間距離公式的計算即可得出結(jié)果.
解答: 解:∵點A(1,0,2),B(1,-3,1),
則|AB|=
(1-1)2+(0+3)2+(2-1)2
=
10

故答案為:
10
點評:熟練掌握空間兩點間距離公式是解題的關(guān)鍵,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-mx+m2-19=0},B={y|y2-5y+6=0},C={z|z2+2z-8=0},是否存在實數(shù)m,同時滿足A∩B≠∅,A∩C=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x-
π
3
).
(Ⅰ)請你用“五點法”畫出函數(shù)f(x)在長度為一個周期的閉區(qū)間上的圖象;
(Ⅱ)若x∈[
π
2
,π]時,求函數(shù)f(x)的最值以及取得最值時的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=m2-5m+6+(m2-3m)i,當(dāng)實數(shù)m取何值時.
(Ⅰ)z為實數(shù);
(Ⅱ)復(fù)數(shù)z對應(yīng)的點在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABCDEF中,底面ABCD是正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,G和H分別是CE和CF的中點.
(1)求證:平面AFC⊥平面BDEF;
(2)求證:平面BDGH∥平面AEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
2
x
-mlnx(m∈R).
(Ⅰ)若m=4,求f(x)在(1,f(1))處的切線方程;
(Ⅱ)若f(x)在(0,+∞)單調(diào)遞增,求m的取值范圍;
(Ⅲ)求g(x)=f(x)+(m+3)lnx+1的零點個數(shù).(ln2≈0.693,ln3≈1.099).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-2,-1),
b
=(λ,1),λ∈R.
(Ⅰ)當(dāng)λ=3時,求
a
b
及|
a
+
b
|;
(Ⅱ)若
a
b
的夾角的余弦值為正,λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在矩形ABCD中,AD=2,AB=4,E,F(xiàn)分別為邊AB,AD的中點.現(xiàn)將△ADE沿DE折起,得四棱錐A-BCDE(如圖2).
(1)求證:EF∥平面ABC;
(2)若平面ADE⊥平面BCDE,求四面體FDCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
是已知的平面向量,向量
a
b
,
c
在同一平面內(nèi)且兩兩不共線,有如下四個命題:
①給定向量
b
,總存在向量
c
,使
a
=
b
+
c
;
②給定向量
b
c
,總存在實數(shù)λ和μ,使
a
b
c

③給定單位向量
b
和正數(shù)μ,總存在單位向量
c
和實數(shù)λ,使
a
b
c

④若|
a
|=2,存在單位向量
b
、
c
和正實數(shù)λ,μ,使
a
b
c
,則3λ+3μ≥6
其中真命題是
 

查看答案和解析>>

同步練習(xí)冊答案