精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,曲線的參數方程為(為參數).為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.

1)求曲線的普通方程和極坐標方程;

2)設直線與曲線交于兩點,求的取值范圍.

【答案】(1)的極坐標方程為,普通方程為;(2)

【解析】

(1)根據三角函數恒等變換可得, ,可得曲線的普通方程,再運用圖像的平移得依題意得曲線的普通方程為,利用極坐標與平面直角坐標互化的公式可得方程;

(2)法一:將代入曲線的極坐標方程得,運用韋達定理可得,根據,可求得的范圍;

法二:設直線的參數方程為(為參數,為直線的傾斜角),代入曲線的普通方程得,運用韋達定理可得,根據,可求得的范圍;

(1),

,即曲線的普通方程為,

依題意得曲線的普通方程為

,得曲線的極坐標方程為;

(2)法一:將代入曲線的極坐標方程得,則

,,異號

,,;

法二:設直線的參數方程為(為參數,為直線的傾斜角),代入曲線的普通方程得

,,,異號

,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

(1),求函數的所有零點;

(2),證明函數不存在極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,點到點的距離比它到軸的距離多1,記點的軌跡為;

1)求軌跡的方程;

2)求定點到軌跡上任意一點的距離的最小值;

3)設斜率為的直線過定點,求直線與軌跡恰好有一個公共點,兩個公共點,三個公共點時的相應取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若一個四位數的各位數字相加和為10,則稱該數為“完美四位數”,如數字“2017”.試問用數字0,1,2,3,4,5,6,7組成的無重復數字且大于2017的“完美四位數”有( )個.

A. 71B. 66C. 59D. 53

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】半正多面體(semiregular solid) 亦稱阿基米德多面體,是由邊數不全相同的正多邊形為面的多面體,體現(xiàn)了數學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某農戶考察三種不同的果樹苗A、B、C,經引種試驗后發(fā)現(xiàn),引種樹苗A的自然成活率為0.8,引種樹苗B、C的自然成活率均為0.9.

1)若引種樹苗A、BC10.

①估計自然成活的總棵數;

②利用①的估計結論,從沒有自然成活的樹苗中隨機抽取兩棵,求抽到的兩棵都是樹苗A的概率;

2)該農戶決定引種B種樹苗,引種后沒有自然成活的樹苗中有75%的樹苗可經過人工栽培技術處理,處理后成活的概率為0.8,其余的樹苗不能成活.若每棵樹苗引種最終成活后可獲利300元,不成活的每棵虧損50元,該農戶為了獲利不低于20萬元,問至少引種B種樹苗多少棵?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于統(tǒng)計數據的分析,有以下幾個結論,其中正確的個數為(

①利用殘差進行回歸分析時,若殘差點比較均勻地落在寬度較窄的水平帶狀區(qū)域內,則說明線性回歸模型的擬合精度較高;

②將一組數據中的每個數據都減去同一個數后,期望與方差均沒有變化;

③調查劇院中觀眾觀后感時,從50排(每排人數相同)中任意抽取一排的人進行調查是分層抽樣法;

④已知隨機變量服從正態(tài)分布,且,則.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《孫子算經》是中國古代重要的數學著作,書中有一問題:今有方物一束,外周一匝有三十二枚,問積幾何?,該著作中提出了一種解決此問題的方法:重置二位,左位減八,余加右位,至盡虛減一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數8的整數倍時,均可采用此方法求解,如圖是解決這類問題的程序框圖,若輸入,則輸出的結果為(

A.80B.47C.79D.48

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中真命題的個數是  

中,的三內角AB,C成等差數列的充要條件;

若“,則”的逆命題為真命題;

充分不必要條件;

的充要條件.

A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案