【題目】若一個(gè)四位數(shù)的各位數(shù)字相加和為10,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“2017”.試問用數(shù)字0,1,2,3,4,5,6,7組成的無重復(fù)數(shù)字且大于2017的“完美四位數(shù)”有( )個(gè).
A. 71B. 66C. 59D. 53
【答案】A
【解析】
根據(jù)題意,分析可得四位數(shù)字相加和為10的情況有①0、1、3、6,②0、1、4、5,③0、1、
2、7,④0、2、3、5,⑤1、2、3、4;共5種情況,據(jù)此分5種情況討論,依次求出每種情
況下大于2017的“完美四位數(shù)”的個(gè)數(shù),將其相加即可得答案.
根據(jù)題意,四位數(shù)字相加和為10的情況有①0、1、3、6,②0、1、4、5,③0、1、2、7,
④0、2、3、5,⑤1、2、3、4;共5種情況,
則分5種情況討論:
①、四個(gè)數(shù)字為0、1、3、6時(shí),
千位數(shù)字可以為3或6,有2種情況,將其余3個(gè)數(shù)字全排列,安排在百位、十位、個(gè)位,
有種情況,此時(shí)有個(gè)“完美四位數(shù)”,
②、四個(gè)數(shù)字為0、1、4、5時(shí),
千位數(shù)字可以為4或5,有2種情況,將其余3個(gè)數(shù)字全排列,安排在百位、十位、個(gè)位,
有種情況,此時(shí)有個(gè)“完美四位數(shù)”,
③、四個(gè)數(shù)字為0、1、2、7時(shí),
千位數(shù)字為7時(shí),將其余3個(gè)數(shù)字全排列,安排在百位、十位、個(gè)位,有種情況,
千位數(shù)字為2時(shí),有2071、2107、2170、2701、2710,共5種情況,此時(shí)有個(gè)“完
美四位數(shù)”,
④、四個(gè)數(shù)字為0、2、3、5時(shí),
千位數(shù)字可以為2或3或5,有3種情況,將其余3個(gè)數(shù)字全排列,安排在百位、十位、個(gè)
位,有種情況,此時(shí)有個(gè)“完美四位數(shù)”,
⑤、四個(gè)數(shù)字為1、2、3、4時(shí),
千位數(shù)字可以為3或4或2,有3種情況,將其余3個(gè)數(shù)字全排列,安排在百位、十位、個(gè)
位,有種情況,此時(shí)有個(gè)“完美四位數(shù)”,
則一共有個(gè)“完美四位數(shù)”,
故選:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體 ABCDEF中,四邊形ABCD是邊長為2的菱形,且平面ABCD⊥平面DCE.AF∥DE,且AF=DE=2,BF=2.
(1)求證:AC⊥BE;
(2)若點(diǎn)F到平面DCE的距離為,求直線EC與平面BDE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為(1+cos2θ)=8sinθ.
(1)求曲線C的普通方程;
(2)直線l的參數(shù)方程為,t為參數(shù)直線與y軸交于點(diǎn)F與曲線C的交點(diǎn)為A,B,當(dāng)|FA||FB|取最小值時(shí),求直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩種棉花中各抽測了25根棉花的纖維長度(單位: ) 組成一個(gè)樣本,且將纖維長度超過315的棉花定為一級(jí)棉花.設(shè)計(jì)了如下莖葉圖:
(1)根據(jù)以上莖葉圖,對(duì)甲、乙兩種棉花的纖維長度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論(不必計(jì)算);
(2)從樣本中隨機(jī)抽取甲、乙兩種棉花各2根,求其中恰有3根一級(jí)棉花的概率;
(3)用樣本估計(jì)總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機(jī)抽取1根,求其中一級(jí)棉花根數(shù)X的分布列及數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線 是圓心的極坐標(biāo)為()且經(jīng)過極點(diǎn)的圓
(1)求曲線C1的極坐標(biāo)方程和C2的普通方程;
(2)已知射線分別與曲線C1,C2交于點(diǎn)A,B(點(diǎn)B異于坐標(biāo)原點(diǎn)O),求線段AB的長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,且a10=19,S10=100;數(shù)列{bn}對(duì)任意n∈N*,總有b1b2b3…bn﹣1bn=an+2成立.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)記cn=(﹣1)n,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一網(wǎng)購狂歡節(jié)”源于淘寶商城(天貓)年月日舉辦的促銷活動(dòng),當(dāng)時(shí)參與的商家數(shù)量和促銷力度均有限,但營業(yè)額遠(yuǎn)超預(yù)想的效果,于是月日成為天貓舉辦大規(guī)模促銷活動(dòng)的固定日期.如今,中國的“雙十一”已經(jīng)從一個(gè)節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商為分析近年“雙十一”期間的宣傳費(fèi)用(單位:萬元)和利潤(單位:十萬元)之間的關(guān)系,搜集了相關(guān)數(shù)據(jù),得到下列表格:
(萬元) | ||||||||
(十萬元) |
(1)請(qǐng)用相關(guān)系數(shù)說明與之間是否存在線性相關(guān)關(guān)系(當(dāng)時(shí),說明與之間具有線性相關(guān)關(guān)系);
(2)建立關(guān)于的線性回歸方程(系數(shù)精確到),預(yù)測當(dāng)宣傳費(fèi)用為萬元時(shí)的利潤.
附參考公式:回歸方程中和最小二乘估計(jì)公式分別為
,,相關(guān)系數(shù)
參考數(shù)據(jù):,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.下圖所示的陽馬中,側(cè)棱底面ABCD,且,則當(dāng)點(diǎn)E在下列四個(gè)位置:PA中點(diǎn)、PB中點(diǎn)、PC中點(diǎn)、PD中點(diǎn)時(shí)分別形成的四面體中,鱉臑有( )個(gè).
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某種細(xì)菌的適宜生長溫度為10℃~25℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:
溫度/℃ | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
繁殖數(shù)量/個(gè) | 20 | 25 | 33 | 27 | 51 | 112 | 194 |
對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如下表所示:
18 | 66 | 3.8 | 112 | 4.3 | 1428 | 20.5 |
其中,.
(1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);
(3)當(dāng)溫度為25℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?
參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,.
參考數(shù)據(jù):.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com