【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)是否存在正實數(shù),使得對任意,都有,若存在,求出實數(shù)的取值范圍;若不存在,請說明理由;
(Ⅲ)當(dāng)時, ,對恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投資0.25萬元,經(jīng)預(yù)測可知,市場對這種產(chǎn)品的年需求量為500件,當(dāng)出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時,銷售所得的收入約為(萬元).
(1)若該公司的年產(chǎn)量為x(單位:百件),試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤表示為年產(chǎn)量x的函數(shù);
(2)當(dāng)這種產(chǎn)品的年產(chǎn)量為多少時,當(dāng)年所得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:與拋物線C:相切.
(1)求拋物線方程;
(2)斜率不為0的直線經(jīng)過拋物線C的焦點F,交拋物線于兩點A,B,拋物線C上是否存在兩點D,E關(guān)于直線對稱.若存在求出斜率k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),圓的極坐標(biāo)方程為.
(1)寫出直線的方程和圓的直角坐標(biāo)方程;
(2)若點為圓上一動點,求點到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù),).
(1)求函數(shù)在點處的切線方程;
(2)若對于任意,存在,使得,求的取值范圍;
(3)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有( )
A.設(shè)正六棱錐的底面邊長為1,側(cè)棱長為,那么它的體積為
B.用斜二測法作△ABC的水平放置直觀圖得到邊長為a的正三角形,則△ABC面積為
C.三個平面可以將空間分成4,6,7或者8個部分
D.已知四點不共面,則其中任意三點不共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知斜率為的直線與橢圓交于,兩點,線段的中點為.
(1)證明:;
(2)設(shè)為的右焦點,為上一點,且.證明:,,成等差數(shù)列,并求該數(shù)列的公差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計,可將該禮品看成是由圓O及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)而成,如圖2.已知圓O的半徑為,設(shè),,圓錐的側(cè)面積為(S圓錐的側(cè)面積(R-底面圓半徑,I-母線長))
(1)求S關(guān)于的函數(shù)關(guān)系式;
(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積S最大.求S取得最大值時腰的長度
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com