【題目】在正方體ABCD﹣A1B1C1D1中,當點E在B1D1(與B1,D1不重合)上運動時,總有:
①AE∥BC1; ②平面AA1E⊥平面BB1D1D;
③AE∥平面BC1D; ④A1C⊥AE.
以上四個推斷中正確的是( )
A.①②B.①④C.②④D.③④
科目:高中數(shù)學 來源: 題型:
【題目】某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照,,,分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)若不等式解集為,求實數(shù)的值;
(2)在(1)的條件下,若不等式解集非空,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《九章算術》中,將底面為直角三角形且側棱垂直于底面的三棱柱稱之為塹堵;將底面為矩形且一側棱垂直于底面的四棱錐稱之為陽馬;將四個面均為直角三角形的四面體稱之為鱉臑[biē nào].某學校科學小組為了節(jié)約材料,擬依托校園內(nèi)垂直的兩面墻和地面搭建一個塹堵形的封閉的實驗室,是邊長為2的正方形.
(1)若是等腰三角形,在圖2的網(wǎng)格中(每個小方格都是邊長為1的正方形)畫出塹堵的三視圖;
(2)若,在上,證明:,并回答四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,請說明理由;
(3)當陽馬的體積最大時,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,,分別是橢圓的左,右焦點,點P是橢圓E上一點,滿足軸,.
(1)求橢圓E的離心率;
(2)過點的直線l與橢圓E交于兩點A,B,若在橢圓B上存在點Q,使得四邊形OAQB為平行四邊形,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有以下命題:①如果向量與任何向量不能構成空間向量的一組基底,那么的關系是不共線;②為空間四點,且向量不構成空間的一個基底,那么點一定共面;③已知向量是空間的一個基底,則向量,也是空間的一個基底。其中正確的命題是( )
A. ①②B. ①③C. ②③D. ①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.
(1)求證:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中為正實數(shù).
(Ⅰ)若是函數(shù)的極值點,討論函數(shù)的單調(diào)性;
(Ⅱ)若在上無最小值,且在上是單調(diào)增函數(shù),求的取值范圍,并由此判斷曲線與曲線在交點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程與曲線的直角坐標方程;
(2)若與交于兩點,點的極坐標為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com