【題目】如圖,在平面直角坐標(biāo)系xOy中,,分別是橢圓的左,右焦點(diǎn),點(diǎn)P是橢圓E上一點(diǎn),滿足軸,

1)求橢圓E的離心率;

2)過點(diǎn)的直線l與橢圓E交于兩點(diǎn)A,B,若在橢圓B上存在點(diǎn)Q,使得四邊形OAQB為平行四邊形,求直線l的斜率.

【答案】(1);(2

【解析】

1)根據(jù),,,建立的方程即可求解(2)斜率不存在時(shí)不符合題意,斜率存在時(shí)利用平行四邊形的對(duì)角線互相平分,求出AB 中點(diǎn),可得出Q坐標(biāo),利用點(diǎn)在橢圓上上求出斜率.

1)由軸,得,所以

因?yàn)?/span>,,所以,

,得,

解得(舍),所以

2)因?yàn)?/span>,所以,

橢圓E方程可化為

若直線l斜率不存在,直線,與橢圓E只有一個(gè)交點(diǎn),不成立.

(法一)設(shè)直線l方程為,,AB中點(diǎn),

因?yàn)橹本l過點(diǎn),所以,

聯(lián)立方程組,得

,得

由韋達(dá)定理,,,

,,即點(diǎn).

因?yàn)槠叫兴倪呅?/span>OAQB,所以點(diǎn),

因?yàn)辄c(diǎn)Q在橢圓上,所以,

化簡(jiǎn)得

,得,解得

(法二)設(shè)直線l的方程為,,,AB中點(diǎn),

,得,

,得

由韋達(dá)定理,,,

,,即點(diǎn)

因?yàn)槠叫兴倪呅?/span>OAQB,所以點(diǎn),

因?yàn)辄c(diǎn)Q在橢圓上,所以,

化簡(jiǎn)得,解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解一款電冰箱的使用時(shí)間和市民對(duì)這款電冰箱的購買意愿,研究人員對(duì)該款電冰箱進(jìn)行了相應(yīng)的抽樣調(diào)查,得到數(shù)據(jù)的統(tǒng)計(jì)圖表如下:

購買意愿市民年齡

不愿意購買該款電冰箱

愿意購買該款電冰箱

總計(jì)

40歲以上

600

800

40歲以下

400

總計(jì)

800

(1)根據(jù)圖中的數(shù)據(jù),估計(jì)該款電冰箱使用時(shí)間的中位數(shù);

(2)完善表中數(shù)據(jù),并據(jù)此判斷是否有的把握認(rèn)為“愿意購買該款電冰箱“與“市民年齡”有關(guān);

(3)用頻率估計(jì)概率,若在該電冰箱的生產(chǎn)線上隨機(jī)抽取3臺(tái),記其中使用時(shí)間不低于4年的電冰箱的臺(tái)數(shù)為,求的期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是直線上任意兩點(diǎn),外一點(diǎn),若上一點(diǎn)滿足,則的值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.

(1)求直線與平面所成角的正弦值;

(2)若點(diǎn)M,N分別在AB,PC上,且平面,試確定點(diǎn)M,N的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5,該紙片上的等邊三角形ABC的中心為O,點(diǎn)D,EF為圓O上的點(diǎn),,分別是以BC,CAAB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起,,使得D,E,F重合于P,得到三棱錐

1)當(dāng)時(shí),求三棱錐的體積;

2)當(dāng)的邊長(zhǎng)變化時(shí),三棱錐的側(cè)面和底面所成二面角為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,當(dāng)點(diǎn)EB1D1(與B1,D1不重合)上運(yùn)動(dòng)時(shí),總有:

AEBC1; ②平面AA1E⊥平面BB1D1D

AE∥平面BC1D; A1CAE

以上四個(gè)推斷中正確的是(

A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4名運(yùn)動(dòng)員參加一次乒乓球比賽,每名運(yùn)動(dòng)員都賽場(chǎng)并決出勝負(fù).設(shè)第位運(yùn)動(dòng)員共勝場(chǎng),負(fù)場(chǎng),則錯(cuò)誤的結(jié)論是( )

A.

B.

C. 為定值,與各場(chǎng)比賽的結(jié)果無關(guān)

D. 為定值,與各場(chǎng)比賽結(jié)果無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,四邊形ABCD為菱形,且,平面ABCD,,且,

求證:平面ACF

求直線AE與平面ACF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知pxR,x2+2xaqx24x+3≤0r:(xm[x﹣(m+1]≤0

1)若命題p的否定是假命題,求實(shí)數(shù)a的取值范圍;

2)若qr的必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案