已知A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的6個頂點,在頂點取自A,B,C,D,E,F(xiàn)的所有三角形中,隨機(等可能)取一個三角形.設隨機變量X為取出三角形的面積.

(Ⅰ) 求概率P ( X=);

(Ⅱ) 求數(shù)學期望E ( X ).

 

【答案】

(Ⅰ)  (Ⅱ)

【解析】

試題分析:

(Ⅰ) 由題意得取出的三角形的面積是的概率

P ( X=)=.                                                        7分

(Ⅱ) 隨機變量X的分布列為

X

P

 

所以E ( X )=×××.                          14分

考點:本題主要考查隨機事件的概率和隨機變量的分布列、數(shù)學期望等概念,同時考查抽象概括、運算求解能力和應用意識。

點評:求解此類問題時,要分清事件類型,再用相應的概率公式求解;寫分布列時,步驟要規(guī)范,數(shù)據(jù)要準確.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

6、給出如下四個命題:
①對于任意一條直線a,平面α內必有無數(shù)條直線與a垂直;
②若α、β是兩個不重合的平面,l、m是兩條不重合的直線,則α∥β的一個充分而不必要條件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四條不重合的直線,如果a⊥c,a⊥d,b⊥c,b⊥d,則“a∥b”與“c∥d”不可能都不成立;
④已知命題P:若四點不共面,那么這四點中任何三點都不共線.
則命題P的逆否命題是假命題上命題中,正確命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c,d都是正數(shù),S=
a
a+b+d
+
b
b+c+a
+
c
c+d+a
+
d
d+a+c
,則S的取值范圍是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b,c>d,且a,b,c,d均不為0,那么下列不等式成立的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C、D四點不共面,且AB∥平面α,CD∥平面α,AC∩α=E,AD∩α=F,BD∩α=G,BC∩α=H,則四邊形EFGH是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c,d是實數(shù),用分析法證明:
a2+b2
+
c2+d2
(a+c)2+(b+d)2

查看答案和解析>>

同步練習冊答案