【題目】已知函數(shù)f(x)=x2+bx,則“b<0”是“f(f(x))的最小值與f(x)的最小值相等”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cosx(sinx-cosx)+m(m∈R),將y=f(x)的圖象向左平移 個單位后得到g(x)的圖象,且y=g(x)在區(qū)間[]內(nèi)的最小值為 .
(1)求m的值;
(2)在銳角△ABC中,若g( )=,求sinA+cosB的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:x2+y2﹣2ay=0(a>0)截直線x+y=0所得線段的長度是2 ,則圓M與圓N:(x﹣1)2+(y﹣1)2=1的位置關(guān)系是( 。
A.內(nèi)切
B.相交
C.外切
D.相離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, , , .直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使平面平面. 為線段的中點, 為線段上的動點.
(1)求證: ;
(2)當(dāng)點是線段中點時,求二面角的余弦值;
(3)是否存在點,使得直線平面?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面四邊形ABCD,AB=BC=3,CD=1,AD= ,∠ADC=90°,沿直線AC將△ACD翻折成△ACD′,直線AC與BD′所成角的余弦的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB.
(1)證明:A=2B;
(2)若cosB= ,求cosC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,M是矩形ABCD的邊CD上的一點,AC與BM交于點N,BN=BM.
(1)求證:M是CD的中點;
(2)若AB=2,BC=1,H是BM上異于點B的一動點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,g(x)=x2+2ax+1(a為正實數(shù)),滿足f(0)=g(0);
函數(shù)F(x)=f(x)+g(x)+b定義域為D.
(1)求a的值;
(2)若存在x0∈D,使F(x0)=x0成立,求實數(shù)b的取值范圍;
(3)若n為正整數(shù),證明:<4.
(參考數(shù)據(jù):lg3=0.3010, =0.1342,=0.0281, =0.0038)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com