在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-4x=0.若直線y=k(x+1)上存在一點(diǎn)P,使過P所作的圓的兩條切線相互垂直,則實(shí)數(shù)k的取值范圍是( 。
A、(-∞,-2
2
B、[-2
2
,2
2
]
C、[-
2
5
5
,
2
5
5
]
D、(-∞,-2
2
]∪[2
2
,+∞)
考點(diǎn):直線和圓的方程的應(yīng)用
專題:綜合題,直線與圓
分析:由題意可得圓心為C(2,0),半徑R=2;設(shè)兩個(gè)切點(diǎn)分別為A、B,則由題意可得四邊形PACB為正方形,圓心到直線y=k(x+1)的距離小于或等于PC=2
2
,即
|2k-0+k|
k2+1
≤2
2
,由此求得k的范圍.
解答: 解:∵C的方程為x2+y2-4x=0,故圓心為C(2,0),半徑R=2.
設(shè)兩個(gè)切點(diǎn)分別為A、B,則由題意可得四邊形PACB為正方形,故有PC=
2
R=2
2
,
∴圓心到直線y=k(x+1)的距離小于或等于PC=2
2
,
|2k-0+k|
k2+1
≤2
2
,解得k2≤8,可得-2
2
≤k≤2
2
,
故選:B.
點(diǎn)評:本題主要考查直線和圓相交的性質(zhì),點(diǎn)到直線的距離公式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}對任意的m、n∈N*,滿足am+n=am+an,且a2=1,那么a10等于(  )
A、3B、5C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則它的體積是( 。
A、5
B、6
C、
14
3
D、
19
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,M={x|x2+3x<0},N={x|y=
-x-1
},則圖中陰影部分表示的集合為( 。
A、{x|x>-1}
B、{x|-3<x<0}
C、{x|x≤-3}
D、{x|-1<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a3+a4=a12,a1+a2=10,則a2+a4+…a100的值等于(  )
A、1300
B、1350
C、2650
D、
28000
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+mx+n(m,n∈R)的值域?yàn)閇0,+∞),若關(guān)于x的不等式f(x)<a-1的解集為(m-3,m+2),則實(shí)數(shù)a的值是(  )
A、
21
4
B、
25
4
C、6
D、
29
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足
1+z
1-z
=i(i為虛數(shù)單位),則z的虛部為( 。
A、1B、-iC、iD、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足
BF1
=
F1F2
,且
AB
AF2
=0.
(1)若過A、B、F2三點(diǎn)的圓恰好與直線l1:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0)使得以PM、PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(cosφ,sinφ),b=(cosx,sinx),其中0<φ<π,且函數(shù)f(x)=(
a
b
)cosx+sin(φ-x)sinx的圖象過點(diǎn)(
π
6
,1).
(Ⅰ)求φ的值;
(Ⅱ)將函數(shù)y=f(x)圖象向右平移
π
6
,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案