【題目】已知函數(shù),,是實數(shù).
(Ⅰ)若在處取得極值,求的值;
(Ⅱ)若在區(qū)間為增函數(shù),求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,函數(shù)有三個零點,求的取值范圍.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】試題(Ⅰ)由極值的定義知,由此可求得值;(Ⅱ)題意說明
在區(qū)間恒成立, 即在上恒成立,由不等式性質(zhì)可得的范圍;(Ⅲ)函數(shù)是三次函數(shù),它有三個零點,則此函數(shù)在上必定有在一個極大值也有一個極小值,且極大值大于0.極小值小于0,利用導(dǎo)數(shù)確定出極值點,再解相應(yīng)不等式組即可.
試題解析:(Ⅰ)
由在處取得極值,得,
所以(適合題意)
(Ⅱ),因為在區(qū)間為增函數(shù),
所以在區(qū)間恒成立,
所以恒成立,即恒成立
由于,得.的取值范圍是
(Ⅲ),
故,得或
當(dāng)時,,在上是增函數(shù),顯然不合題意
當(dāng)時,、隨的變化情況如下表:
要使有三個零點,
故需,
解得.所以的取值范圍是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形和均為平行四邊形,點在平面內(nèi)的射影恰好為點,以為直徑的圓經(jīng)過點,,的中點為,的中點為,且.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線: 與曲線交于點與直線交于點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的焦點為,拋物線上一定點.
(1)求拋物線的方程及準(zhǔn)線的方程;
(2)過焦點的直線(不經(jīng)過點)與拋物線交于兩點,與準(zhǔn)線交于點,記的斜率分別為,問是否存在常數(shù),使得成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,直線經(jīng)過橢圓的左頂點.
(1)求橢圓的方程;
(2)設(shè)直線()交橢圓于兩點(不同于點).過原點的一條直線與直線交于點,與直線分別交于點.
(。┊(dāng)時,求的最大值;
(ⅱ)若,求證:點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線:與直線()交于,兩點.
(1)當(dāng)時,分別求在點和處的切線方程;
(2)軸上是否存在點,使得當(dāng)變動時,總有?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二手經(jīng)銷商小王對其所經(jīng)營的型號二手汽車的使用年數(shù)與銷售價格(單位:萬元/輛)進(jìn)行整理,得到如下數(shù)據(jù):
下面是關(guān)于的折線圖:
(1)由折線圖可以看出,可以用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)求關(guān)于的回歸方程并預(yù)測某輛型號二手汽車當(dāng)使用年數(shù)為9年時售價大約為多少?(、小數(shù)點后保留兩位有效數(shù)字).
(3)基于成本的考慮,該型號二手車的售價不得低于7118元,請根據(jù)(2)求出的回歸方程預(yù)測在收購該型號二手車時車輛的使用年數(shù)不得超過多少年?
參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:
,. .
參考數(shù)據(jù):
,,,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線交于兩點, 是的中點,過作軸的垂線交于點.
(1)證明:拋物線在點處的切線與平行;
(2)是否存在實數(shù),使以為直徑的圓經(jīng)過點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com