【題目】的內(nèi)角,的對(duì)邊分別為,,,已知 ,.

(1)求角;

(2)若點(diǎn)滿足,求的長(zhǎng).

【答案】(1);(2)

【解析】

1)解法一:對(duì)條件中的式子利用正弦定理進(jìn)行邊化角,得到的值,從而得到角的大;解法二:對(duì)對(duì)條件中的式子利用余弦定理進(jìn)行角化邊,得到的值,從而得到角的大。唤夥ㄈ豪蒙溆岸ɡ硐嚓P(guān)內(nèi)容進(jìn)行求解.

2)解法一:在中把邊和角都解出來,然后在中利用余弦定理求解;解法二:在中把邊和角都解出來,然后在中利用余弦定理求解;解法三:將表示,平方后求出的模長(zhǎng).

(1)【解法一】由題設(shè)及正弦定理得,

所以.

由于,則.

又因?yàn)?/span>

所以.

【解法二】

由題設(shè)及余弦定理可得,

化簡(jiǎn)得.

因?yàn)?/span>,所以.

又因?yàn)?/span>,

所以.

【解法三】

由題設(shè)

結(jié)合射影定理,

化簡(jiǎn)可得.

因?yàn)?/span>.所以.

又因?yàn)?/span>

所以.

(2)【解法1】由正弦定理易知,解得.

又因?yàn)?/span>,所以,即.

中,因?yàn)?/span>,所以,

所以在中,,

由余弦定理得,

所以.

【解法2

中,因?yàn)?/span>,,所以.

由余弦定理得.

因?yàn)?/span>,所以.

中,,

由余弦定理得

所以.

【解法3

中,因?yàn)?/span>,所以,.

因?yàn)?/span>,所以.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的長(zhǎng)軸長(zhǎng)為,過點(diǎn)的直線軸垂直,橢圓的離心率, 為橢圓的左焦點(diǎn),.

求此橢圓的方程;

設(shè)是此橢圓上異于的任意一點(diǎn), , 為垂足,延長(zhǎng)到點(diǎn)使得.連接并延長(zhǎng),交直線于點(diǎn)的中點(diǎn),判定直線與以為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)過原點(diǎn)作函數(shù)的切線,求的方程;

(Ⅱ)若對(duì)于任意恒成立,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知標(biāo)準(zhǔn)方程下的橢圓的焦點(diǎn)在軸上,且經(jīng)過點(diǎn)它的一個(gè)焦點(diǎn)恰好與拋物線的焦點(diǎn)重合.橢圓的上頂點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),連接、,記直線的斜率分別為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共13分)

已知, 1 ,對(duì)于表示UV中相對(duì)應(yīng)的元素不同的個(gè)數(shù).

)令,存在m個(gè),使得,寫出m的值;

)令,若,求證: ;

)令,若,求所有之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意實(shí)數(shù)ab,c,給出下列命題:

①“”是“”的充要條件

②“是無理數(shù)”是“a是無理數(shù)”的充要條件;

③“”是“”的充分不必要條件

④“”是“”的必要不充分條件,

其中真命題的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【題目】已知拋物線的焦點(diǎn)曲線的一個(gè)焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)為拋物線上任意一點(diǎn),過點(diǎn)軸的平行線交拋物線的準(zhǔn)線于,直線交拋物線于點(diǎn).

(Ⅰ)求拋物線的方程;

(Ⅱ)求證:直線過定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對(duì)學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如下:

損壞餐椅數(shù)

未損壞餐椅數(shù)

總 計(jì)

學(xué)習(xí)雷鋒精神前

50

150

200

學(xué)習(xí)雷鋒精神后

30

170

200

總 計(jì)

80

320

400

(1)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?

(2)請(qǐng)說明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?

參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)如圖,在四棱錐中, 平面,底面是菱形, , 的交點(diǎn), 上任意一點(diǎn).

1)證明:平面平面;

2)若平面,并且二面角的大小為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案