【題目】的內(nèi)角,的對邊分別為,,已知 ,,.

(1)求角;

(2)若點滿足,求的長.

【答案】(1);(2)

【解析】

1)解法一:對條件中的式子利用正弦定理進行邊化角,得到的值,從而得到角的大小;解法二:對對條件中的式子利用余弦定理進行角化邊,得到的值,從而得到角的大小;解法三:利用射影定理相關(guān)內(nèi)容進行求解.

2)解法一:在中把邊和角都解出來,然后在中利用余弦定理求解;解法二:在中把邊和角都解出來,然后在中利用余弦定理求解;解法三:將表示,平方后求出的模長.

(1)【解法一】由題設(shè)及正弦定理得,

,

所以.

由于,則.

又因為,

所以.

【解法二】

由題設(shè)及余弦定理可得

化簡得.

因為,所以.

又因為

所以.

【解法三】

由題設(shè),

結(jié)合射影定理

化簡可得.

因為.所以.

又因為,

所以.

(2)【解法1】由正弦定理易知,解得.

又因為,所以,即.

中,因為,,所以,

所以在中,,,

由余弦定理得

所以.

【解法2

中,因為,所以,.

由余弦定理得.

因為,所以.

中,,,

由余弦定理得

所以.

【解法3

中,因為,,所以,.

因為,所以.

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的長軸長為,過點的直線軸垂直,橢圓的離心率, 為橢圓的左焦點,.

求此橢圓的方程;

設(shè)是此橢圓上異于的任意一點, , 為垂足,延長到點使得.連接并延長,交直線于點的中點,判定直線與以為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)過原點作函數(shù)的切線,求的方程;

(Ⅱ)若對于任意恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知標(biāo)準(zhǔn)方程下的橢圓的焦點在軸上,且經(jīng)過點,它的一個焦點恰好與拋物線的焦點重合.橢圓的上頂點為過點的直線交橢圓于兩點,連接,記直線的斜率分別為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共13分)

已知, 1, ,對于, 表示UV中相對應(yīng)的元素不同的個數(shù).

)令,存在m,使得,寫出m的值;

)令,若,求證: ;

)令,若,求所有之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對任意實數(shù)a,b,c,給出下列命題:

①“”是“”的充要條件

②“是無理數(shù)”是“a是無理數(shù)”的充要條件;

③“”是“”的充分不必要條件

④“”是“”的必要不充分條件,

其中真命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【題目】已知拋物線的焦點曲線的一個焦點, 為坐標(biāo)原點,點為拋物線上任意一點,過點軸的平行線交拋物線的準(zhǔn)線于,直線交拋物線于點.

(Ⅰ)求拋物線的方程;

(Ⅱ)求證:直線過定點,并求出此定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:

損壞餐椅數(shù)

未損壞餐椅數(shù)

總 計

學(xué)習(xí)雷鋒精神前

50

150

200

學(xué)習(xí)雷鋒精神后

30

170

200

總 計

80

320

400

(1)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?

(2)請說明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)如圖,在四棱錐中, 平面,底面是菱形, , 的交點, 上任意一點.

1)證明:平面平面;

2)若平面,并且二面角的大小為,求的值.

查看答案和解析>>

同步練習(xí)冊答案