(n∈N*)的展開(kāi)式中,所有項(xiàng)系數(shù)的和為-32,則的系數(shù)等于   
【答案】分析:根據(jù)題意,在中,令x=1可得,其展開(kāi)式所有項(xiàng)系數(shù)的和為(-2)n,結(jié)合題意可得n的值,進(jìn)而由二項(xiàng)式定理可得其展開(kāi)式的通項(xiàng),令的指數(shù)為2,可得r的值,將r的值代入展開(kāi)式的通項(xiàng),可得答案.
解答:解:在中,令x=1可得,其展開(kāi)式所有項(xiàng)系數(shù)的和為(-2)n,
又由題意可得,(-2)n=-32,則n=5,
則(-3)5的展開(kāi)式的通項(xiàng)為T(mén)r+1=C5r5-r(-3)r
令5-r=2,可得r=3,
則含的為T(mén)4=C532(-3)3=-270,
故答案為-270.
點(diǎn)評(píng):本題考查二項(xiàng)式系數(shù)的性質(zhì),關(guān)鍵是用賦值法求出n的值,由此得到該二項(xiàng)式展開(kāi)式的通項(xiàng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•自貢一模)要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開(kāi),逐個(gè)求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
n•2n-1
n•2n-1
 n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開(kāi),逐個(gè)求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=________ n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在棱長(zhǎng)為1的正方體ABCD—A1B1C1D1中,P、M、N分別為棱DD1、AB、BC的中點(diǎn).

(1)求二面角B1MNB的正切值;

(2)證明PB⊥平面MNB1;

(3)(理)畫(huà)出此正方體的一個(gè)表面展開(kāi)圖,使其滿足“有4個(gè)正方形面相連成一個(gè)長(zhǎng)方形”的條件,并求出展開(kāi)圖中P、B兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省自貢市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開(kāi),逐個(gè)求導(dǎo),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=     n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省廣州市名師高考數(shù)學(xué)模擬試試卷(解析版) 題型:解答題

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開(kāi),逐個(gè)求導(dǎo),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=     n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案