如圖,在棱長(zhǎng)為1的正方體ABCD—A1B1C1D1中,P、M、N分別為棱DD1、AB、BC的中點(diǎn).

(1)求二面角B1MNB的正切值;

(2)證明PB⊥平面MNB1;

(3)(理)畫出此正方體的一個(gè)表面展開圖,使其滿足“有4個(gè)正方形面相連成一個(gè)長(zhǎng)方形”的條件,并求出展開圖中P、B兩點(diǎn)間的距離.

(1)解:如圖,連結(jié)BD交MN于F,則BF⊥MN,連結(jié)B1F.

∵B1B⊥平面ABCD,∴B1F⊥MN.則∠B1FB為二面角B1MNB的平面角.

在Rt△B1FB中,設(shè)B1B=1,則FB=,

∴tan∠B1FB=.

 (2)證明:過點(diǎn)P作PE⊥AA1于E,則PE∥DA,連結(jié)BE.∵DA⊥平面ABB1A1,∴PE⊥平面ABB1A1.又BE⊥B1M,∴PB⊥MB1.

又MN∥AC,BD⊥AC,∴BD⊥MN.又PD⊥平面ABCD,∴PB⊥MN.

∴PB⊥平面MNB1.

(3)(理)解:PB=.

符合條件的正方體表面展開圖可以是以下6種之一(只要畫出其中之一即可):


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省南京市金陵中學(xué)高三(上)8月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案