【題目】已知函數(shù)f x=ax﹣exa∈R),gx=

)求函數(shù)f x)的單調(diào)區(qū)間;

x00,+∞),使不等式f x≤gx﹣ex成立,求a的取值范圍.

【答案】)答案見(jiàn)解析(

【解析】

試題(f′x=a﹣ex,x∈R.對(duì)a分類(lèi)討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可得出;

)由x00,+∞),使不等式fx≤gx﹣ex,即a≤.設(shè)hx=,則問(wèn)題轉(zhuǎn)化為a,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值即可得出.

解:(∵f′x=a﹣ex,x∈R

當(dāng)a≤0時(shí),f′x)<0,fx)在R上單調(diào)遞減;

當(dāng)a0時(shí),令f′x=0x=lna

f′x)>0fx)的單調(diào)遞增區(qū)間為(﹣∞,lna);

f′x)<0fx)的單調(diào)遞減區(qū)間為(lna,+∞).

∵x00+∞),使不等式fx≤gx﹣ex,則,即a≤

設(shè)hx=,則問(wèn)題轉(zhuǎn)化為a,

h′x=,令h′x=0,則x=

當(dāng)x在區(qū)間(0,+∞) 內(nèi)變化時(shí),h′x)、hx)變化情況如下表:

由上表可知,當(dāng)x=時(shí),函數(shù)hx)有極大值,即最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動(dòng)了我國(guó)經(jīng)濟(jì)的巨大發(fā)展.據(jù)統(tǒng) 計(jì),2018年這一年內(nèi)從 市到市乘坐高鐵或飛機(jī)出行的成年人約為萬(wàn)人次.為了 解乘客出行的滿意度,現(xiàn)從中隨機(jī)抽取人次作為樣本,得到下表(單位:人次):

滿意度

老年人

中年人

青年人

乘坐高鐵

乘坐飛機(jī)

乘坐高鐵

乘坐飛機(jī)

乘坐高鐵

乘坐飛機(jī)

10(滿意)

12

1

20

2

20

1

5(一般)

2

3

6

2

4

9

0(不滿意)

1

0

6

3

4

4

span>1)在樣本中任取個(gè),求這個(gè)出行人恰好不是青年人的概率;

2)在2018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,記其中老年人出行的人次為.以頻率作為概率,的分布列和數(shù)學(xué)期望;

3)如果甲將要從市出發(fā)到,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機(jī)? 并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于雙曲線,定義為其伴隨曲線,記雙曲線的左、右頂點(diǎn)為、

1)當(dāng)時(shí),記雙曲線的半焦距為,其伴隨橢圓的半焦距為,若,求雙曲線的漸近線方程.

2)若雙曲線的方程為,弦軸,記直線與直線的交點(diǎn)為,求其動(dòng)點(diǎn)的軌跡方程.

3)過(guò)雙曲線的左焦點(diǎn),且斜率為的直線與雙曲線交于兩點(diǎn),求證:對(duì)任意的,在伴隨曲線上總存在點(diǎn),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ6sinθ,建立以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸的平面直角坐標(biāo)系.直線l的參數(shù)方程是,(t為參數(shù))

(1)求曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C相交于A,B兩點(diǎn),且|AB|=,求直線的斜率k

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則下列命題中正確命題的序號(hào)是( )

①若直線平行于平面內(nèi)的無(wú)數(shù)條直線,則直線∥平面.

②若直線∥平面,直線∥直線,則直線平行于平面內(nèi)的無(wú)數(shù)條直線.

③若直線不平行,則不可能垂直于同一平面.

④若直線∥平面,平面平面,則直線平面

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列中,,且.

1的通項(xiàng)公式為__________;

2)在、、、項(xiàng)中,被除余的項(xiàng)數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示為一名曰塹堵的幾何體,已知 AE⊥底面BCFE DF AE , DF = AE = 1, CE =,四邊形ABCD 是正方形.

1)《九章算術(shù)》中將四個(gè)面都是直角三角形的四面體稱為鱉臑.判斷四面體 EABC 是否為鱉臑,若是,寫(xiě)出其 每一個(gè)面的直角,并證明;若不是,請(qǐng)說(shuō)明理由.

2)求四面體 EABC 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三實(shí)驗(yàn)班的60名學(xué)生期中考試的語(yǔ)文、數(shù)學(xué)成績(jī)都在內(nèi),其中語(yǔ)文成績(jī)分組區(qū)間是:,,,.其成績(jī)的頻率分布直方圖如圖所示,這60名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示:

分組區(qū)間

24

3

數(shù)學(xué)人數(shù)

12

4

1)求圖中的值及數(shù)學(xué)成績(jī)?cè)?/span>的人數(shù);

2)語(yǔ)文成績(jī)?cè)?/span>3名學(xué)生均是女生,數(shù)學(xué)成績(jī)?cè)?/span>4名學(xué)生均是男生,現(xiàn)從這7名學(xué)生中隨機(jī)選取4名學(xué)生,事件為:“其中男生人數(shù)不少于女生人數(shù)”,求事件發(fā)生的概率;

3)若從數(shù)學(xué)成績(jī)?cè)?/span>的學(xué)生中隨機(jī)選取2名學(xué)生,且這2名學(xué)生中數(shù)學(xué)成績(jī)?cè)?/span>的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司準(zhǔn)備投產(chǎn)一種新產(chǎn)品,經(jīng)測(cè)算,已知每年生產(chǎn)萬(wàn)件的該種產(chǎn)品所需要的總成本(萬(wàn)元),依據(jù)產(chǎn)品尺寸,產(chǎn)品的品質(zhì)可能出現(xiàn)優(yōu)、中、差三種情況,隨機(jī)抽取了1000件產(chǎn)品測(cè)量尺寸,尺寸分別在,,,(單位:)中,經(jīng)統(tǒng)計(jì)得到的頻率分布直方圖如圖所示.

產(chǎn)品的品質(zhì)情況和相應(yīng)的價(jià)格(元/件)與年產(chǎn)量之間的函數(shù)關(guān)系如下表所示.

產(chǎn)品品質(zhì)

立品尺寸的范圍

價(jià)格與產(chǎn)量的函數(shù)關(guān)系式

優(yōu)

以頻率作為概率解決如下問(wèn)題:

1)求實(shí)數(shù)的值;

2)當(dāng)產(chǎn)量確定時(shí),設(shè)不同品質(zhì)的產(chǎn)品價(jià)格為隨機(jī)變量,求隨機(jī)變量的分布列;

3)估計(jì)當(dāng)年產(chǎn)量為何值時(shí),該公司年利潤(rùn)最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案