(1)化簡求值:
4a
2
3
b
1
3
÷
-2
3a
1
3
b
4
3
,其中a=
1
3
,b=
1
2

(2)已知2lg(x-2y)=lgx+lgy,求log2
x
y
的值.
考點:對數(shù)的運算性質(zhì),函數(shù)的零點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)直接利用有理指數(shù)冪的運算法則化簡,代入已知條件求解即可.
(2)利用對數(shù)的運算法則化簡,代入所求的表達式,求出x=4y即可得到結(jié)果.
解答: 解:(1)a=
1
3
,b=
1
2
,
4a
2
3
b
1
3
÷
-2
3a
1
3
b
4
3
=-6a
2
3
+
1
3
b
4
3
-
1
3
=-
1
3
×
1
2
=-1.…(6分)
(2)2lg(x-2y)=lgx+lgy可轉(zhuǎn)化為
x>0
y>0
x-2y>0
(x-2y)2=xy
,解之得:x=4y…(10分)
∴l(xiāng)og2
x
y
=log24=2.   …(14分)
點評:本題考查對數(shù)的運算法則,有理指數(shù)冪的化簡求值,基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

a,b是異面直線,下面四個命題:
①過a至少有一個平面平行于b; 
②過a至少有一個平面垂直于b;
③至多有一條直線與a,b都垂直;
④至少有一個平面與a,b都平行.
其中正確命題的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x+1
x+a
(a≠
1
2
).
(1)若a=-1,證明f(x)=
2x+1
x+a
在區(qū)間(1,+∞)上是減函數(shù);
(2)若函數(shù)f(x)=
2x+1
x+a
在區(qū)間(-1,+∞)上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x∈R|x2-3x+2≤0},B={x∈R|4x-a•2x-2a2≥0}
(Ⅰ)當a=1時,求A∩B;
(Ⅱ)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題A:方程
y2
5-t
+
x2
t-1
=1表示焦點在y軸上的橢圓;命題B:實數(shù)t使得不等式t2-(a+1)t+a<0成立.
(1)若命題A為真,求實數(shù)t的取值范圍;
(2)若命題B是命題A的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-
1
xm
,x∈(0,+∞),且f(2)=
3
2

(1)用定義證明函數(shù)f(x)在其定義域上為增函數(shù);
(2)若a>0,解關(guān)于x的不等式f(3x-2-1)<f(9ax-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合X是實數(shù)集R的子集,如果點x0∈R滿足:對任意a>0,都存在x∈X,使得|x-x0|<a,那么稱x0為集合X的聚點.現(xiàn)有下列集合:
①{y|y=ex},
②{x|lnx>0},
{x|x=
1
n
,n∈N*}

{x|x=
n
n+1
,n∈N*}

其中以0為聚點的集合有( 。
A、①②B、①③C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+2ax+5在區(qū)間(4,+∞)上是減函數(shù),則a的取值范圍是(  )
A、(-∞,4]
B、(-∞,4)
C、[4,+∞)
D、(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線C:y2=2px上的點M(4,-4)作傾斜角互補的兩條直線MA、MB,分別交拋物線于A、B兩點.
(1)若|AB|=4
10
,求直線AB的方程;
(2)不經(jīng)過點M的動直線l交拋物線C于P、Q兩點,且以PQ為直徑的圓過點M,那么直線l是否過定點?如果是,求定點的坐標;如果不是,說明理由.

查看答案和解析>>

同步練習冊答案