【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù), ).

(1)求曲線的直角坐標方程和直線的普通方程;

(2)若曲線上的動點到直線的最大距離為,求的值.

【答案】1,直線的普通方程為: 2

【解析】試題分析:(1因為, 故可得曲線,直線的普通方程為: ;(2由點到直線的距離公式可得: , .

試題解析

1,

因為, 故可得曲線,

消去參數(shù)可得直線的普通方程為: ;

2由(1可得曲線的參數(shù)方程為: 為參數(shù))

由點到直線的距離公式可得:

據(jù)條件可知,由于,分如下情況:

時,由;

時,由;

綜上, .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數(shù)對,再統(tǒng)計其中x,y能與1構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù)m,最后根據(jù)統(tǒng)計個數(shù)m估計的值.如果統(tǒng)計結(jié)果是,那么可以估計的值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科站技術(shù)員為了解某品種樹苗的生長情況,在該批樹苗中隨機抽取一個容量為100的樣本,測量樹苗高度(單位:).經(jīng)統(tǒng)計,高度在區(qū)間內(nèi),將其按,,,,分成6組,制成如圖所示的頻率分布直方圖,其中高度不低于的樹苗為優(yōu)質(zhì)樹苗.

附:

,其中

1)求頻率分布直方圖中的值;

2)已知所抽取的這100棵樹苗來自于甲、乙兩個地區(qū),部分數(shù)據(jù)如下列聯(lián)表所示,將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有%的把握認為優(yōu)質(zhì)樹苗與地區(qū)有關(guān)?

甲地區(qū)

乙地區(qū)

合計

優(yōu)質(zhì)樹苗

5

非優(yōu)質(zhì)樹苗

25

合計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),下述四個結(jié)論:

是偶函數(shù);

的最小正周期為;

的最小值為0

上有3個零點

其中所有正確結(jié)論的編號是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車是碳排放量比較大的行業(yè)之一,歐盟規(guī)定,從2015年開始,將對排放量超過130g/km型新車進行懲罰(視為排放量超標),某檢測單位對甲、乙兩類型品牌抽取5輛進行排放量檢測,記錄如下(單位:g/km):

80

110

120

140

150

100

120

x

y

160

經(jīng)測算發(fā)現(xiàn),乙品牌車排放量的平均值為.

)從被檢測的5輛甲類品牌中任取2輛,則至少有一輛排放量超標的概率是多少?

)若乙類品牌的車比甲類品牌的的排放量的穩(wěn)定性要好,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓 (a>b>0)的左焦點為F上頂點為B. 已知橢圓的離心率為,A的坐標為,.

I)求橢圓的方程;

II)設(shè)直線l 與橢圓在第一象限的交點為P,l與直線AB交于點Q. (O為原點) ,k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次數(shù)學知識比賽中共有6個不同的題目,每位同學從中隨機抽取3個題目進行作答,已知這6個題目中,甲只能正確作答其中的4個,而乙正確作答每個題目的概率均為,且甲、乙兩位同學對每個題目的作答都是相互獨立、互不影響的.

1)求甲、乙兩位同學總共正確作答3個題目的概率;

2)若甲、乙兩位同學答對題目個數(shù)分別是,,由于甲所在班級少一名學生參賽,故甲答對一題得15分,乙答對一題得10分,求甲乙兩人得分之和的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有橡皮泥制作的底面半徑為5,高為9的圓錐和底面半徑為,高為8的圓柱各一個.若將它們重新制作成總體積與各自的高均保持不變,但底面半徑相同的新的圓錐與圓柱各一個,則新的底面半徑為_________;若新圓錐的內(nèi)接正三棱柱表面積取到最大值,則此正三棱柱的底面邊長為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的偶函數(shù)滿足,且時,,則函數(shù)上的所有零點之和為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案