分析 通過(n+1)an-(n-1)an-1=0(n≥2)得出后一項與前一項的比,進(jìn)而利用累乘法計算即得結(jié)論.
解答 解:∵(n+1)an-(n-1)an-1=0(n≥2),
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,
∴$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n-2}{n}$,$\frac{{a}_{n-2}}{{a}_{n-3}}$=$\frac{n-3}{n-1}$,…,$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{3}$,
累乘得:$\frac{{a}_{n}}{{a}_{1}}$=$\frac{2}{n(n+1)}$,
又∵a1=2,
∴an=$\frac{4}{n(n+1)}$,
故答案為:$\frac{4}{n(n+1)}$.
點評 本題考查數(shù)列的通項,利用累乘法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,0)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-2,0) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 31 | B. | 15 | C. | 11 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{7\sqrt{3}π}}{3}$ | B. | $\frac{{8\sqrt{3}π}}{3}$ | C. | $\frac{7π}{3}$ | D. | $\frac{8π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<m<1 | B. | 0<m≤$\frac{1}{4}$ | C. | $\frac{1}{4}$≤m<1 | D. | m<3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | ±$\frac{3}{10}$ | C. | $\frac{3}{10}$ | D. | -$\frac{3}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com