(本小題滿分14分)
設(shè)橢圓其相應(yīng)于焦點的準線方程為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知過點傾斜角為的直線交橢圓兩點,求證:
;
(Ⅲ)過點作兩條互相垂直的直線分別交橢圓,求 的最小值
(1)橢圓的方程為;(2)同解析(3)取得最小值
(1)由題意得:


橢圓的方程為
(2)方法一:
由(1)知是橢圓的左焦點,離心率
設(shè)為橢圓的左準線。則
軸交于點H(如圖)
點A在橢圓上




同理
。
方法二:
時,記,則
將其代入方程  得
設(shè)  ,則是此二次方程的兩個根.


   ................(1)
代入(1)式
得      ........................(2)
時, 仍滿足(2)式。

(3)設(shè)直線的傾斜角為,由于由(2)可得
   ,

時,取得最小值
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C的中心在原點、焦點在軸上,橢圓C上的點到焦點的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線橢圓交于不同的兩點M,N(M,N不是左、右頂點),且以MN為直徑的圓經(jīng)過橢圓的右頂點A.求證:直線過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知圓和圓,直線與圓相切于點;圓的圓心在射線上,圓過原點,且被直線截得的弦長為
(Ⅰ)求直線的方程;
(Ⅱ)求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)
在直角坐標系中,點M到點的距離之和是4,點M的軌跡是C與x軸的負半軸交于點A,不過點A的直線與軌跡C交于不同的兩點P和Q.
(I)求軌跡C的方程;
(II)當時,求k與b的關(guān)系,并證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求橢圓為參數(shù))的準線方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標平面內(nèi),已知點,是平面內(nèi)一動點,直線、斜率之積為.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點作直線與軌跡交于兩點,線段的中點為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P在橢圓上,焦點為F1F2,且∠F1PF2=30°,求△F1PF2的面積.(8分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為橢圓上任一點(不是長軸頂點),過點的切線與過長軸頂點與長軸垂直的直線相交于點,求證以線段為直徑的圓過這個橢圓的兩個焦點

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,焦點在y軸上的橢圓的標準方程是           

查看答案和解析>>

同步練習冊答案