(13分)
在直角坐標系中,點M到點的距離之和是4,點M的軌跡是C與x軸的負半軸交于點A,不過點A的直線與軌跡C交于不同的兩點P和Q.
(I)求軌跡C的方程;
(II)當時,求k與b的關(guān)系,并證明直線過定點.
(I)(II)且直線經(jīng)過定點
(1)的距離之和是4,
的軌跡C是長軸為4,焦點在x軸上焦中為的橢圓,
其方程為                                     …………3分
(2)將,代入曲線C的方程,
整理得 
…………5分
因為直線與曲線C交于不同的兩點P和Q,
所以
設(shè),則
 ②                                        …………7分

顯然,曲線C與x軸的負半軸交于點A(-2,0),
所以

將②、③代入上式,整理得                   …………10分
所以
經(jīng)檢驗,都符合條件①
當b=2k時,直線的方程為
顯然,此時直線經(jīng)過定點(-2,0)點.
即直線經(jīng)過點A,與題意不符.
時,直線的方程為
顯然,此時直線經(jīng)過定點點,且不過點A.
綜上,k與b的關(guān)系是:
且直線經(jīng)過定點點                                                                   …………13分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)橢圓其相應(yīng)于焦點的準線方程為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知過點傾斜角為的直線交橢圓兩點,求證:
;
(Ⅲ)過點作兩條互相垂直的直線分別交橢圓,求 的最小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)已知橢圓C的中心在坐標原點,焦點在x軸上,離心率.直線:與橢圓C相交于兩點, 且.
(1)求橢圓C的方程;
(2)點P(,0),A、B為橢圓C上的動點,當時,求證:直線AB恒過一個定點.并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題15分)已知橢圓的右焦點恰好是拋物線的焦點,
是橢圓的右頂點.過點的直線交拋物線兩點,滿足,
其中是坐標原點.
(1)求橢圓的方程;
(2)過橢圓的左頂點軸平行線,過點軸平行線,直線
相交于點.若是以為一條腰的等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦距是2,則m的值為                              (    )
A.6B.9C.6或4D.9或1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓左焦點是,右焦點是,右準線是,上一點,與橢圓交于點,滿足,則等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直角三角形的直角頂點為動點,為兩個定點,作,動點滿足,當點運動時,設(shè)點的軌跡為曲線,曲線軸正半軸的交點為
(Ⅰ) 求曲線的方程;
(Ⅱ) 是否存在方向向量為m的直線,與曲線交于,兩點,且 與的夾角為?若存在,求出所有滿足條件的直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與橢圓相交于A、B兩點,且線段AB的中點,在直線上.(1)求此橢圓的離心率;(2)若橢圓的右焦點關(guān)于直線的對稱點的在圓上,求此橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓方程為,則這個橢圓的焦距為(     )
A.6B.2C.D.

查看答案和解析>>

同步練習冊答案