19.下列命題錯(cuò)誤的是( 。
A.命題“若lgx=0,則x=0”的逆否命題為“若x≠0,則lgx≠0”
B.若p∧q為假命題,則p,q均為假命題
C.命題p:?x0∈R,使得sinx0>1,則¬p“?x∈R,均有sinx≤1
D.“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要條件

分析 寫出原命題的逆否命題,可判斷A;根據(jù)復(fù)合命題真假判斷的真值表,可判斷B;寫出原命題的否定命題,可判斷C;根據(jù)充要條件的定義,可判斷D.

解答 解:命題“若lgx=0,則x=0”的逆否命題為“若x≠0,則lgx≠0”,故A正確;
若p∧q為假命題,則p,q存在假命題,但不一定均為假命題,故B錯(cuò)誤;
命題p:?x0∈R,使得sinx0>1,則¬p“?x∈R,均有sinx≤1,故C正確;
“$\frac{1}{x}$<$\frac{1}{2}$”?“x>2,或x<0”,故“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要條件,故D正確;
故選:B

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,復(fù)合命題,充要條件,特稱命題等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.{an}是等差數(shù)列,{bn}是等比數(shù)列,若a2=b2>0,a4=b4>0,a2≠a4,b1>0,則(  )
A.a1<b1,a3<b3B.a1<b1,a3>b3C.a1<b1,a5>b5D.a1<b1,a5<b5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)-g(x)=x2-x+1,則f(1)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知α∈(0,π),tan($α-\frac{π}{4}$)=$\frac{1}{3}$,則sin($\frac{π}{4}+α$)=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知橢圓$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}=1(m,n$為常數(shù),m>n>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是以橢圓短軸為直徑的圓上任意一點(diǎn),則$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=2n-m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.?dāng)?shù)列的前4項(xiàng)為1,-$\frac{1}{2}$,$\frac{1}{3}$,-$\frac{1}{4}$,則此數(shù)列的通項(xiàng)公式可以是( 。
A.(-1)n$\frac{1}{n}$B.(-1)n+1$\frac{1}{n}$C.(-1)n$\frac{1}{n+1}$D.(-1)n+1$\frac{1}{n-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知a,b,c∈R,且a>b>c,則下列不等式一定成立的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.2a-b<1C.$\frac{a}{{c}^{2}+1}$>$\frac{{c}^{2}+1}$D.lg(a-b)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,則輸出s的值為(  )
A.21B.55C.91D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=x2-(a+2)x+alnx,常數(shù)a>0
(1)當(dāng)x=1時(shí),函數(shù)f(x)取得極小值-2,求函數(shù)f(x)的極大值
(2)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若$\frac{h(x)-g(x)}{{x-{x_0}}}>0$在D內(nèi)恒成立,則稱點(diǎn)P為h(x)的“類優(yōu)點(diǎn)”,若點(diǎn)(1,f(1))是函數(shù)f(x)的“類優(yōu)點(diǎn)”,
①求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程
②求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案