11.已知a,b,c∈R,且a>b>c,則下列不等式一定成立的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.2a-b<1C.$\frac{a}{{c}^{2}+1}$>$\frac{{c}^{2}+1}$D.lg(a-b)>0

分析 根據(jù)對數(shù)和指數(shù)函數(shù)的性質(zhì)判斷B,D,舉反例判斷A,根據(jù)不等式的基本性質(zhì)判斷C.

解答 解:A、當(dāng)a=-1,b=-2,顯然不成立,本選項不一定成立;
B、∵a>b,則a-b>0.則2a-b>1,本選項不成立;
C、由c2+1≥1,故本選項一定成立;
D、∵a-b>0,當(dāng)<a-b<1時,本選項不成立
故選:C

點評 此題考查了不等式的性質(zhì),利用了反例的方法,是一道基本題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.M是△ABC所在平面內(nèi)一點,$\frac{2}{3}\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow 0$,D為AC中點,則$\frac{{|\overrightarrow{MD}|}}{{|\overrightarrow{BM}|}}$的值為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A={x|x<1},B={x|x>3},則∁R(A∪B)={x|1≤x≤3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題錯誤的是(  )
A.命題“若lgx=0,則x=0”的逆否命題為“若x≠0,則lgx≠0”
B.若p∧q為假命題,則p,q均為假命題
C.命題p:?x0∈R,使得sinx0>1,則¬p“?x∈R,均有sinx≤1
D.“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若$\frac{1}$<$\frac{1}{a}$<0,則下列結(jié)論不正確的是( 。
A.a2<b2B.ab>b2C.a+b<0D.|a|+|b|>a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:x2>x是x>1的充分不必要條件;命題q:若數(shù)列{an}的前n項和Sn=n2,那么數(shù)列{an}是等差數(shù)列.則下列命題是真命題的是( 。
A.p∨(¬q)B.p∨qC.p∧qD.(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,M是BC的中點,且BM1⊥BC,平面B1C1CB⊥平面ABC.BC=CA=AA1
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.集合A={1,2,3,4,5},B={x|x2-3x<0},則A∩B=( 。
A.{1,2}B.{2,3}C.{3,4}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列命題中
①若loga3>logb3,則a>b;
②函數(shù)f(x)=x2-2x+3,x∈[0,+∞)的值域為[2,+∞);
③設(shè)g(x)是定義在區(qū)間[a,b]上的連續(xù)函數(shù).若g(a)=g(b)>0,則函數(shù)g(x)無零點;
④函數(shù)$h(x)=\frac{{1-{e^{2x}}}}{e^x}$既是奇函數(shù)又是減函數(shù).
其中正確的命題有②④.

查看答案和解析>>

同步練習(xí)冊答案