如圖所示,在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,且PA=AD=2,AB=1,AC=
3

(1)證明:CD⊥平面PAC;
(2)求四棱錐P-ABCD的體積.
考點(diǎn):直線與平面垂直的判定,棱柱、棱錐、棱臺(tái)的體積
專題:證明題,空間位置關(guān)系與距離
分析:(1)由PA⊥平面ABCD,CD?平面ABCD可證明PA⊥CD,在△ACD中,由已知可得AC2+CD2=AD2,即CD⊥AC,又PA∩AC=A,PA?平面PAC,AC?平面PAC,從而證明CD⊥平面PAC.
(2)先求S四邊形ABCD=AB×AC=
3
,從而由VP-ABCD=
1
3
×
S四邊形ABCD×PA,即可求解.
解答: (本小題滿分12分)
解:(1)證明:∵PA⊥平面ABCD,CD?平面ABCD
∴PA⊥CD…(2分)
在△ACD中,AD=2,CD=1,AC=
3

∴AC2+CD2=AD2
∴∠ACD=90°,即CD⊥AC…(4分)
又PA∩AC=A,PA?平面PAC,AC?平面PAC,
∴CD⊥平面PAC…(6分)
(2)∵S四邊形ABCD=AB×AC=
3
…(9分)
∴VP-ABCD=
1
3
×
S四邊形ABCD×PA=
1
3
×
3
×2=
2
3
3
…(12分)
點(diǎn)評(píng):本題主要考查了直線與平面垂直的判定,考查了棱柱、棱錐、棱臺(tái)的體積的解法,體現(xiàn)了數(shù)形結(jié)合和等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在上海自貿(mào)區(qū)的利好刺激下,A公司開拓國(guó)際市場(chǎng),基本形成了市場(chǎng)規(guī)模;自2014年1月以來(lái)的第n個(gè)月(2014年1月為第一個(gè)月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量+出口量)分別為bn、cn和an(單位:萬(wàn)件),依據(jù)銷售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下營(yíng)銷趨勢(shì):bn+1=a•an,cn+1=an+ban2(其中a,b為常數(shù),n∈N*),已知a1=1萬(wàn)件,a2=1.5萬(wàn)件,a3=1.875萬(wàn)件.
(1)求a,b的值,并寫出an+1與an滿足的關(guān)系式;
(2)證明:an逐月遞增且控制在2萬(wàn)件內(nèi);
(3)試求從2014年1月份以來(lái)的第n個(gè)月的銷售總量an關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,E為棱AA1上任意一點(diǎn),F(xiàn)是CD的中點(diǎn).
(1)證明:BD⊥EC1;
(2)若AF∥平面C1DE,求
AE
A1A
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓錐的母線長(zhǎng)為2cm,底面圓的周長(zhǎng)為2πcm,則圓錐的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列給出的圖形中,繞給出的軸旋轉(zhuǎn)一周(如圖所示),能形成圓臺(tái)的是
 
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3-x 2,x∈[-1,2]
x-3,x∈2,5]

(1)在如圖所示給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;
(2)寫出f(x)的單調(diào)遞增區(qū)間;
(3)由圖象指出當(dāng)x取什么值時(shí)f(x)有最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2008年5月18日某愛心人士為一位孤兒去銀行存款a元,存的是一年定期儲(chǔ)蓄;2009年5月18日他將到期存款的本息一起取出,再加a元后,還存一年的定期儲(chǔ)蓄,此后每年5月18日都如此;假設(shè)銀行一年定期儲(chǔ)蓄的年利率r不變,直到2015年5月18日這位孤兒準(zhǔn)備上大學(xué)時(shí),他將所有的存款和利息全部取出并且資助給這位孤兒,取出的錢數(shù)共為(  )
A、a(1+r)7
B、a[(1+r)7+(1+r)]元
C、
a
r
[(1+r)7-r]元
D、
a
r
[(1+r)8-(1+r)]元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足不等式組
x-y≥0
x+2y≥0
x≤2
,則z=x-2y的最大值與最小值的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把3個(gè)不同的禮物(A,B,C)分給2個(gè)人(甲,乙),有幾種分法?

查看答案和解析>>

同步練習(xí)冊(cè)答案