在△中,角、所對的邊長分別為、,

(1)若,,求的值;
(2)若,求的取值范圍.

(1);(2)

解析試題分析:(1)已知兩邊,要求第三邊,最好能求出已知兩邊的夾角,然后用余弦定理可求得,而由已知條件可得,從而可知,即,問題得解;(2)這是三角函數(shù)的一般性問題,解決它的一般方法是把函數(shù)化為的形式,然后利用正弦函數(shù)的知識解決問題,,首先用二倍角公式,降冪公式把二次式化為一次式
,再利用兩角和的正弦公式把兩個三角函數(shù)化為一個三角函數(shù),,接下來我們只要把作為一個整體,求出它的范圍,就可借助于正弦函數(shù)求出的取值范圍了.
試題解析:(1)在△中,
所以,所以.      3分
由余弦定理,得
解得.      6分
(2)
.      9分
由(1)得,所以,
.
.∴.
的取值范圍是.      12分
考點:(1)余弦定理;(2)二倍角公式與降冪公式,三角函數(shù)的取值范圍

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角對的邊分別為,已知.
(1)若,求的取值范圍;
(2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)△ABC的內(nèi)角A、B、C所對的邊長分別為ab、c,且
(1)求角A的大;
(2)若角邊上的中線AM的長為,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,已知.求:
(1)AB的值;(2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中,角,,所對的邊分別為,,且滿足
(1)求角;
(2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)在中,若的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的圖像與直線相切,并且切點橫坐標(biāo)依次成公差為的等差數(shù)列.
(1)求的值;
(2)ABC中a、b、c分別是∠A、∠B、∠C的對邊.若是函數(shù) 圖象的一個對稱中心,且a=4,求ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,內(nèi)角的對邊分別為,且
(1)求角的大;
(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內(nèi)的兩個測點C與D,現(xiàn)測得∠BCD=α,∠BDC=β,CD=s,并在點C測得塔頂A的仰角為θ,求塔高AB.

查看答案和解析>>

同步練習(xí)冊答案