已知函數(shù)f(x)=x2-alnx(a∈R).
(1)若函數(shù)f(x)的圖象在x=2處的切線方程為y=x+b,求a,b的值;
(2)若函數(shù)f(x)在(1,+∞)上為增函數(shù),求a的取值范圍.
(1)a=2,b=-2ln2
(2)(-∞,1]
解:(1)因為f′(x)=x- (x>0),
又f(x)在x=2處的切線方程為y=x+b,斜率為1,
所以
解得a=2,b=-2ln2.
(2)若函數(shù)f(x)在(1,+∞)上為增函數(shù),
則f′(x)=x-≥0在(1,+∞)上恒成立,
即a≤x2在(1,+∞)上恒成立.
所以a≤1.檢驗當(dāng)a=1時滿足題意.
故a的取值范圍是(-∞,1].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

學(xué)校或班級舉行活動,通常需要張貼海報進行宣傳,F(xiàn)讓你設(shè)計一張如圖所示的豎向張貼的海報,要求版心面積為128dm2 ,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設(shè)計海報的尺寸才能
使四周空白面積最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=(ax+1)ex.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間[-2,0]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其中
(1)討論在其定義域上的單調(diào)性;
(2)當(dāng)時,求取得最大值和最小值時的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)的定義域是R,f(0)=2,對任意x∈R,f(x)+f′(x)>1,則不等式ex·f(x)>ex+1的解集為(  )
A.{x|x>0}
B.{x|x<0}
C.{x|x<-1或x>1}
D.{x|x<-1或0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間上的最大值是(   )
A.B.0C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,2]上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù),對任意的時,恒成立,則a的范圍為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).若曲線在點處的切線與直線垂直,
(1)求實數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

同步練習(xí)冊答案