精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=(ax+1)ex.
(1)求函數f(x)的單調區(qū)間;
(2)當a>0時,求函數f(x)在區(qū)間[-2,0]上的最小值.
(1)見解析
(2)當a>1時,f(x)在區(qū)間[-2,0]上的最小值為-a·;
當0<a≤1時,f(x)在區(qū)間[-2,0]上的最小值為.
解:依題意,函數的定義域為R,
f′(x)=(ax+1)′ex+(ax+1)(ex)′=ex(ax+a+1).
(1)①當a=0時,f′(x)=ex>0,
則f(x)的單調遞增區(qū)間為(-∞,+∞);
②當a>0時,由f′(x)>0,解得x>-,
由f′(x)<0,解得x<-,
則f(x)的單調遞增區(qū)間為(-,+∞),
f(x)的單調遞減區(qū)間為(-∞,-);
③當a<0時,由f′(x)>0,解得x<-,
由f′(x)<0解得,x>-,
則f(x)的單調遞增區(qū)間為(-∞,-),
f(x)的單調遞減區(qū)間為(-,+∞).
(2)①當時,)上是減函數,
在(-,0)上是增函數,
則函數f(x)在區(qū)間[-2,0]上的最小值為f(-)=-a·
②當時,即當0<a≤1時,f(x)在[-2,0]上是增函數,則函數f(x)在區(qū)間[-2,0]上的最小值為f(-2)=.
綜上,當a>1時,f(x)在區(qū)間[-2,0]上的最小值為-a·;
當0<a≤1時,f(x)在區(qū)間[-2,0]上的最小值為.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數,.若
(1)求的值;
(2)求的單調區(qū)間及極值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數f(x)=ln x--ln a(x>0,a>0且為常數).
(1)當k=1時,判斷函數f(x)的單調性,并加以證明;
(2)當k=0時,求證:f(x)>0對一切x>0恒成立;
(3)若k<0,且k為常數,求證:f(x)的極小值是一個與a無關的常數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是函數的零點,,則:①;②;
;④,其中正確的命題是(  。
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數
(1)求的單調增區(qū)間;
(2)時,函數有三個互不相同的零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設三次函數的導函數為,函數的圖象的一部分如下圖所示,則(     )
A.極大值為,極小值為
B.極大值為,極小值為
C.極大值為,極小值為
D.極大值為,極小值為

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數f(x)=x(x-m)2在x=1處取得極小值,則m=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x2-alnx(a∈R).
(1)若函數f(x)的圖象在x=2處的切線方程為y=x+b,求a,b的值;
(2)若函數f(x)在(1,+∞)上為增函數,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義在上的函數,其導函數是成立,則
A.B.
C.D.

查看答案和解析>>

同步練習冊答案