已知函數(shù)f(x)=alnx+x2 (a為實常數(shù)),e為自然對數(shù)的底數(shù).
(1)求函數(shù)f(x)在[1,e]上的最小值;
(2)若存在x∈[1,e],使得不等式f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.
分析:(1)求出導(dǎo)函數(shù),通過對導(dǎo)函數(shù)為0的根與區(qū)間[1,e]的三種關(guān)系,判斷出函數(shù)的單調(diào)性,求出函數(shù)的極值及端點值,從中選出最小值.
(2)列出不等式有解,分離出參數(shù)a,構(gòu)造函數(shù)g(x),通過導(dǎo)數(shù)求出g(x)的最小值,令a≥g(x)最大值.
解答:解:(1)
f′(x)=(x>0),當(dāng)[1,e],2x
2+a∈[a+2,a+2e
2].
①若a≥-2,f′(x)在[1,e]上非負(僅當(dāng)a=-2,x=1時,f′(x)=0,故函數(shù)f(x)在[1,e]上是增函數(shù),此時[f(x)]
min=f(1)=1.
②若-2e
2<a<-2,當(dāng)
x=時,f′(x)=0;當(dāng)
1≤x<時,f′(x)<0,此時f(x)
是減函數(shù);當(dāng)
<x≤e時,f′(x)>0,此時f(x)是增函數(shù).故
[f(x)]min=f()=
ln(-)-.
③若a≤-2e
2,f′(x)在[1,e]上非正(僅當(dāng)a=-2e
2,x=e時,f′(x)=0,故函數(shù)f(x)在[1,e]上是減函數(shù),此時[f(x)]
min=f(e)=a+e
2.
綜上可知,
[f(x)]min= | 1(a≥-2) | ln(-)-(-2e2<a<-2) | a+e2(a≤-2e2) |
| |
(2)不等式f(x)≤(a+2)x,可化為a(x-lnx)≥x
2-2x.
∵x∈[1,e],∴l(xiāng)nx≤1≤x且等號不能同時取,所以lnx<x,即x-lnx>0,
因而
a≥(x∈[1,e])令
g(x)=(x∈[1,e]),又
g′(x)=,
當(dāng)x∈[1,e]時,x-1≥0,lnx≤1,x+2-2lnx>0,
從而g′(x)≥0(僅當(dāng)x=1時取等號),所g(x)在[1,e]上為增函數(shù),
故g(x)的最小值為g(1)=-1,所以a的取值范圍是[-1,+∞).
點評:求函數(shù)的最值,先通過導(dǎo)數(shù)求出函數(shù)的極值,再求出函數(shù)的兩個端點值,選出函數(shù)的最值;解決函數(shù)有解問題,常分離參數(shù)轉(zhuǎn)化為求函數(shù)的最值.