【題目】已知雙曲線的左右焦點(diǎn)分別為,,實(shí)軸長(zhǎng)為6,漸近線方程為,動(dòng)點(diǎn)在雙曲線左支上,點(diǎn)為圓上一點(diǎn),則的最小值為
A. 8 B. 9 C. 10 D. 11
【答案】B
【解析】
求得雙曲線的a,b,可得雙曲線方程,求得焦點(diǎn)坐標(biāo),運(yùn)用雙曲線的定義和三點(diǎn)共線取得最小值,連接EF1,交雙曲線于M,交圓于N,計(jì)算可得所求最小值.
由題意可得2a=6,即a=3,
漸近線方程為y=±x,即有,
即b=1,可得雙曲線方程為y2=1,
焦點(diǎn)為F1(,0),F2,(,0),
由雙曲線的定義可得|MF2|=2a+|MF1|=6+|MF1|,
由圓E:x2+(y)2=1可得E(0,),半徑r=1,
|MN|+|MF2|=6+|MN|+|MF1|,
連接EF1,交雙曲線于M,交圓于N,
可得|MN|+|MF1|取得最小值,且為|EF1|4,
則則|MN|+|MF2|的最小值為6+4﹣1=9.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:函數(shù)在上單調(diào)遞增;命題:函數(shù)在上單調(diào)遞減.
(Ⅰ)若是真命題,求實(shí)數(shù)的取值范圍;
(Ⅱ)若或為真命題,且為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高三年級(jí)學(xué)生為了慶祝教師節(jié),同學(xué)們?yōu)槔蠋熤谱髁艘淮笈环N規(guī)格的手工藝品,這種工藝品有兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響,若項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為,按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的工藝品為合格品.
(1)求一個(gè)工藝品經(jīng)過檢測(cè)至少一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率;
(2)任意依次抽取該工藝品4個(gè),設(shè)表示其中合格品的個(gè)數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=ex+asinx,x∈(-π,+∞),下列說法正確的是( )
A.當(dāng)a=1時(shí),f(x)在(0,f(0))處的切線方程為2x-y+1=0
B.當(dāng)a=1時(shí),f(x)存在唯一極小值點(diǎn)x0且-1<f(x0)<0
C.對(duì)任意a>0,f(x)在(-π,+∞)上均存在零點(diǎn)
D.存在a<0,f(x)在(-π,+∞)上有且只有一個(gè)零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,由一塊扇形空地,其中,米,計(jì)劃在此扇形空地區(qū)域?yàn)閷W(xué)生建燈光籃球運(yùn)動(dòng)場(chǎng),區(qū)域內(nèi)安裝一批照明燈,點(diǎn)、選在線段上(點(diǎn)、分別不與點(diǎn)、重合),且.
(1)若點(diǎn)在距離點(diǎn)米處,求點(diǎn)、之間的距離;
(2)為了使運(yùn)動(dòng)場(chǎng)地區(qū)域最大化,要求面積盡可能的小,記,請(qǐng)用表示的面積,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為“中學(xué)數(shù)學(xué)聯(lián)賽”選拔人才,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:分?jǐn)?shù)不小于本次考試成績(jī)中位數(shù)的具有復(fù)賽資格,某校有900名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(1)求獲得復(fù)賽資格應(yīng)劃定的最低分?jǐn)?shù)線;
(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間與各抽取多少人?
(3)從(2)抽取的7人中,選出4人參加全市座談交流,設(shè)表示得分在中參加全市座談交流的人數(shù),學(xué)校打算給這4人一定的物質(zhì)獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予500元獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予800元獎(jiǎng)勵(lì),用Y表示學(xué)校發(fā)的獎(jiǎng)金數(shù)額,求Y的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在①,②復(fù)平面上表示的點(diǎn)在直線上,③.這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,求出滿足條件的復(fù)數(shù),以及.已知復(fù)數(shù),,______.若,求復(fù)數(shù),以及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z滿足|z|= 的虛部為2,z所對(duì)應(yīng)的點(diǎn)在第一象限,
(1)求z;
(2)若z,z2,z-z2在復(fù)平面上對(duì)應(yīng)的點(diǎn)分別為A,B,C,求cos∠ABC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com