【題目】已知復(fù)數(shù)z滿足|z|= 的虛部為2,z所對應(yīng)的點在第一象限,

(1)z;

(2)z,z2,z-z2在復(fù)平面上對應(yīng)的點分別為A,B,C,cosABC.

【答案】(1) z=1+i.

(2)

【解析】分析:(1)設(shè)z=x+yi(x,yR),根據(jù)題意得到x,y的方程組,即得z.(2)先求z,z2,z-z2在復(fù)平面上對應(yīng)的點,再利用向量的夾角公式求cosABC.

詳解:(1)設(shè)z=x+yi(x,yR).

|z|

x2+y2=2.

z2=(x+yi)2=x2-y2+2xyi,

2xy=2,xy=1.

①②

z=1+i或z=-1-i.

x>0,y>0,

z=1+i.

(2)z2=(1+i)2=2i,

z-z2=1+i-2i=1-i.

如圖所示,

A(1,1),B(0,2),C(1,-1),

cosABC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的S值是( )

A.﹣1
B.
C.
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】
(1)(坐標(biāo)系與參數(shù)方程選做題)曲線C的直角坐標(biāo)方程為x2+y2﹣2x=0,以原點為極點,x軸的正半軸為極軸建立積坐標(biāo)系,則曲線C的極坐標(biāo)方程為
(2)(不等式選做題)在實數(shù)范圍內(nèi),不等式|2x﹣1|+|2x+1|≤6的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價與上市時間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場售價與時間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時間的函數(shù)關(guān)系式

(2)認(rèn)定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知
(1)求證:tanB=3tanA;
(2)若cosC= ,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解創(chuàng)建文明城市過程中學(xué)生對創(chuàng)建工作的滿意情況,相關(guān)部門對某中學(xué)的100名學(xué)生進行調(diào)查.得到如下的統(tǒng)計表:

滿意

不滿意

合計

男生

50

女生

15

合計

100

已知在全部100名學(xué)生中隨機抽取1人對創(chuàng)建工作滿意的概率為.

(1)在上表中相應(yīng)的數(shù)據(jù)依次為;

(2)是否有充足的證據(jù)說明學(xué)生對創(chuàng)建工作的滿意情況與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均為正數(shù)的兩個數(shù)列{an}和{bn}滿足:an+1= ,n∈N* ,
(1)設(shè)bn+1=1+ ,n∈N*,求證:數(shù)列{ }是等差數(shù)列;
(2)設(shè)bn+1= ,n∈N*,且{an}是等比數(shù)列,求a1和b1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)若φ= ,點P的坐標(biāo)為(0, ),則ω=;
(2)若在曲線段 與x軸所圍成的區(qū)域內(nèi)隨機取一點,則該點在△ABC內(nèi)的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=x2+2mx+2m+3mR),若關(guān)于x的方程fx=0有實數(shù)根,且兩根分別為x1,x2,則(x1+x2x1x2,的最大值為()

A. B. 2C. 3D.

查看答案和解析>>

同步練習(xí)冊答案