已知函數(shù)f(x)=ex(ax+b)-x2-4x,曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程為
y=4x+4.
(1)求a,b的值;
(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
【解】 (1)f′(x)=ex(ax+a+b)-2x-4.
由已知得f(0)=4,f′(0)=4.故b=4,a+b=8.
從而a=4,b=4.
(2)由(1)知,f(x)=4ex(x+1)-x2-4x,
f′(x)=4ex(x+2)-2x-4=4(x+2)
令f′(x)=0,得x=-ln 2或x=-2.
從而當(dāng)x∈(-∞,-2)∪(-ln 2,+∞)時(shí),f′(x)>0;
當(dāng)x∈(-2,-ln 2)時(shí),f′(x)<0.
故f(x)在(-∞,-2),(-ln 2,+∞)上單調(diào)遞增,
在(-2,-ln 2)上單調(diào)遞減.
當(dāng)x=-2時(shí),函數(shù)f(x)取得極大值,極大值為f(-2)=4(1-e-2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖象可能是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知a=(2,-1,1),b=(-1,4,-2),c=(11,5,λ).若向量a,b,c共面,則λ=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com