已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個周期的圖象,如圖
(1)求y=f(x)的解析式;
(2)求y=f(x)在區(qū)間[0,1]上的值域.

【答案】分析:(1)根據所給的圖象看出三角函數(shù)的振幅和周期,根據周期做出ω的值,根據函數(shù)的圖象過一個點,把這個點的坐標代入求出三角函數(shù)的初相,寫出解析式.
(2)根據所給的x的值,寫出解析式中角的范圍,結合正弦函數(shù)的圖象看出正弦的范圍,得到函數(shù)的值域.
解答:解:(1)由題意知A=2,T=7-(-1)=8,

∵圖象過(-1,0),
,∴
∴所求的函數(shù)解析式為
(2)由0≤x≤1,得,

在[0,1]上的值域為
點評:本題考查由三角函數(shù)的圖象確定函數(shù)的解析式,并且求函數(shù)的值域,本題解題的關鍵是求出函數(shù)的初相,這是一個難點,求初相一般采用代入坐標的方法或者是采用五點法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案