點(diǎn)P(ln(2x+2-x-tan,cos2)(x∈R)位于坐標(biāo)平面的
[     ]
A.第一象限
B.第二象限
C.第三象限
D.第四象限
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
12
mx2-2x+1+ln(x+1)(m≥1)

(1)若曲線C:y=f(x)在點(diǎn)P(0,1)處的切線L與C有且只有一個(gè)公共點(diǎn),求m的值;
(2)求證:函數(shù)f(x)存在單調(diào)減區(qū)間[a,b],令t=b-a,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
mx2-2x+1+ln(x+1)

(1)當(dāng)m=-
3
2
時(shí),求函數(shù)f(x)的極值點(diǎn);
(2)當(dāng)m≤1時(shí),曲線C:y=f(x)在點(diǎn)P(0,1)處的切線l與C有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃州區(qū)模擬)已知函數(shù)f(x)=
12
mx2-2x+1+ln(x+1)(m≥1);
(1)求y=f(x)在點(diǎn)P(0,1)處的切線方程;
(2)設(shè)g(x)=f(x)+x-1僅有一個(gè)零點(diǎn),求實(shí)數(shù)m的值;
(3)試探究函數(shù)f(x)是否存在單調(diào)遞減區(qū)間?若有,設(shè)其單調(diào)區(qū)間為[t,s],試求s-t的取值范圍?若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P在曲線y=
1
2
ex+1上,點(diǎn)Q在曲線y=ln(2x-2)上,則|PQ|最小值為( 。
A、1-ln2
B、
2
(2-ln2)
C、1+ln2
D、
2
(1+ln2)

查看答案和解析>>

同步練習(xí)冊(cè)答案