設(shè)點(diǎn)P在曲線y=
1
2
ex+1上,點(diǎn)Q在曲線y=ln(2x-2)上,則|PQ|最小值為( 。
A、1-ln2
B、
2
(2-ln2)
C、1+ln2
D、
2
(1+ln2)
分析:根據(jù)函數(shù)y=
1
2
ex+1與函數(shù)y=ln(2x-2)互為反函數(shù),可知P、Q兩點(diǎn)間的最短距離為點(diǎn)P到直線y=x的最短距離d的2倍,利用導(dǎo)數(shù)求出d即可.
解答:解:∵函數(shù)y=
1
2
ex+1與函數(shù)y=ln(2x-2)互為反函數(shù),
∴函數(shù)y=
1
2
ex+1與函數(shù)y=ln(2x-2)的圖象關(guān)于直線y=x對(duì)稱,
∴|PQ|的最小值是點(diǎn)P到直線y=x的最短距離的2倍,
設(shè)曲線y=
1
2
ex+1上斜率為1的切線為y=x+b,
∵y′=
1
2
ex,由
1
2
ex=1得x=ln2,
即切點(diǎn)為(ln2,2),
∴b=2-ln2,
d=
|2-ln2|
2
,
∴P、Q兩點(diǎn)間的最短距離為2d=
2
(2-ln2)
,
故選B.
點(diǎn)評(píng):本題考查反函數(shù)的概念,導(dǎo)數(shù)的幾何意義,點(diǎn)到直線的距離公式等式知識(shí)的靈活應(yīng)用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:
x=3cosθ
y=2sinθ
,直線l:ρ(cosθ-2sinθ)=12.
(1)將直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在曲線C上,求P點(diǎn)到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)若不等式|x+1|+|x-2|≥a對(duì)任意x∈R恒成立,則a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網(wǎng)
C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線C1
x=3+cosθ
y=sinθ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(
1
2
,0)
,直線l:x=-
1
2
,點(diǎn)P在直線l上移動(dòng),R是線段PF與y軸的交點(diǎn),RQ⊥FP,PQ⊥l.
( I) 求動(dòng)點(diǎn)Q的軌跡的方程C;
( II) 設(shè)圓M過A(1,0),且圓心M在曲線C上,設(shè)圓M過A(1,0),且圓心M在曲線C上,TS是圓M在y軸上截得的弦,當(dāng)M運(yùn)動(dòng)時(shí)弦長(zhǎng)|TS|是否為定值?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鄭州二模)已知曲線C:
x=3
3
cosθ
y=
3
sinθ
’直線l:p(cosθ-
3
sinθ)=12.
(I)將直線l的極坐標(biāo)方程和曲線C的參數(shù)方程都化為直角坐標(biāo)方程;
(II)設(shè)點(diǎn)P在曲線c上,求p點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市高三上學(xué)期期末模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

在平面直角坐標(biāo)系中,已知三點(diǎn),,,曲線C上任意—點(diǎn)滿足:

(l)求曲線C的方程;

(2)設(shè)點(diǎn)P是曲線C上的任意一點(diǎn),過原點(diǎn)的直線L與曲線相交于M,N兩點(diǎn),若直線PM,PN的斜率都存在,并記為,.試探究的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論;

(3)設(shè)曲線C與y軸交于D、E兩點(diǎn),點(diǎn)M (0,m)在線段DE上,點(diǎn)P在曲線C上運(yùn)動(dòng).若當(dāng)點(diǎn)P的坐標(biāo)為(0,2)時(shí),取得最小值,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案