某電視臺(tái)在一次對(duì)文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)數(shù)據(jù)如下表所示:
文藝節(jié)目 新聞節(jié)目 總計(jì)
20歲到40歲 40 20 60
40歲以上 15 25 40
總計(jì) 55 45 100
(1)用分層抽樣方法在收看新聞節(jié)目的觀眾中,隨機(jī)抽取9名,那么40歲以上的觀眾應(yīng)抽取幾名?
(2)由表中數(shù)據(jù)分析,我們能否有99%的把握認(rèn)為收看新聞節(jié)目的觀眾與年齡有關(guān)?(最后結(jié)果保留3位有效數(shù)字,四舍五入)
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d)
P(K2≥k) 0.05 0.01 0.005 0.001
k 3.841 6.635 7.879 10.828
考點(diǎn):獨(dú)立性檢驗(yàn),分層抽樣方法
專題:閱讀型
分析:(1)計(jì)算分層抽樣的抽取比例,根據(jù)比例計(jì)算在40歲以上的觀眾中應(yīng)抽取的人數(shù);
(2)利用公式計(jì)算相關(guān)指數(shù)K2的觀測(cè)值,利用臨界值表判定收看新聞節(jié)目的觀眾與性別有關(guān)的可靠性程度.
解答: 解:(1)用分層抽樣方法,抽取的比例為
9
45
=
1
5

∴在40歲以上的觀眾中應(yīng)抽取的人數(shù)為25×
1
5
=5名;
(2)K2=
100×(40×25-15×20)2
40×45×55×60
=
2450
297
≈8.25

∵8.24>6.635,
∴我們有99%的把握認(rèn)為收看新聞節(jié)目的觀眾與性別有關(guān).
點(diǎn)評(píng):本題考查了分層抽樣方法及獨(dú)立性檢驗(yàn),熟練掌握方程抽樣的特征及獨(dú)立性檢驗(yàn)的思想是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
1-2i
3+i
等于(  )
A、
5-7i
10
B、
1+7i
10
C、
1-7i
8
D、
1-7i
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線C:y2=2px(p>0),在此拋物線上一點(diǎn)M(2,m)到焦點(diǎn)的距離是3.
(1)求此拋物線的方程;
(2)拋物線C的準(zhǔn)線與x軸交于M點(diǎn),過(guò)M點(diǎn)斜率為k的直線l與拋物線C交于A、B兩點(diǎn).是否存在這樣的k,使得拋物線C上總存在點(diǎn)Q(x0,y0)滿足QA⊥QB,若存在,求k的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求(
x
-
3x
9展開(kāi)式中的x4項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l:y=kx+
2
與雙曲線
x2
3
-y2=1恒有兩個(gè)不同的交點(diǎn)A和B,且
OA
OB
>2(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M={x|-2<x<7},N={x|a+1≤x≤2a-1}. 
(1)當(dāng)實(shí)數(shù)a=5時(shí),求M∩N;
(2)是否存在實(shí)數(shù)a使得M∪N=M,若不存在,請(qǐng)說(shuō)明理由,若存在,求出a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1-alnx.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意x∈(0,+∞),都有f(x)≥0成立,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2(n∈N*),且a1=2,a2=1.
(1)求k的值;
(2)求證{Sn-4}為等比數(shù)列;
(3)是否存在正整數(shù)m,n,使得
Sn-m
Sn+1-m
1
2
成立?若存在,求出這樣的正整數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,滿足a3=7,a5+a7=26,求an及Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案