【題目】已知數(shù)列{an} 的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(1)求數(shù)列{bn}的通項公式;
(2)令cn= ,求數(shù)列{cn}的前n項和Tn .
【答案】
(1)解:∵數(shù)列{an}的前n項和 ,
∴a1=11.
當n≥2時, .
又∵an=6n+5對n=1也成立所以an=6n+5,{bn}是等差數(shù)列,設公差為d,則an=bn+bn+1=2bn+d.
當n=1時,2b1=11﹣d;當n=2時,2b2=17﹣d
由 ,
解得d=3,
所以數(shù)列{bn}的通項公式為 ;
(2)解:由 ,
于是, ,
兩邊同乘以2,得 .
兩式相減,得 = =﹣n2n+2.
所以,
【解析】(1)求出數(shù)列{an}的通項公式,再求數(shù)列{bn}的通項公式;(2)求出數(shù)列{cn}的通項,利用錯位相減法求數(shù)列{cn}的前n項和Tn .
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足a1=1,an+1=2an+1(n∈N*)
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,2)為圓C:x2+y2﹣2ax﹣2ay=0(a>0)外一點,圓C上存在點P使得∠CAP=45°,則實數(shù)a的取值范圍是( )
A.(0,1)
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ln(3﹣x)(x+1)的定義域為( )
A.[﹣1,3]
B.(﹣1,3)
C.(﹣∞,﹣3)∪(1,+∞)
D.(﹣∞,﹣1)∪(3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,且, .
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足, .①求數(shù)列的通項公式;②是否存在正整數(shù), (),使得, , 成等差數(shù)列?若存在,求出, 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表
廣告費用x(萬元) | 4 | 2 | 3 | 5 |
銷售額y(萬元) | 49 | 26 | 39 | 54 |
根據(jù)上表可得回歸方程 = x+ 的 為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為( )
A.63.6萬元
B.65.5萬元
C.67.7萬元
D.72.0萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=2sin4x+2cos4x+cos22x﹣3.
(1)求函數(shù)f(x)的最小正周期.
(2)求函數(shù)f(x)在閉區(qū)間[ ]上的最小值并求當f(x)取最小值時,x的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年6月22 日,“國際教育信息化大會”在山東青島開幕.為了解哪些人更關(guān)注“國際教育信息化大會”,某機構(gòu)隨機抽取了年齡在15-75歲之間的100人進行調(diào)查,經(jīng)統(tǒng)計“青少年”與“中老年”的人數(shù)之比為9: 11.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”;
(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調(diào)查.在這9人中再選取3人進行面對面詢問,記選取的3人中關(guān)注“國際教育信息化大會”的人數(shù)為,求的分布列及數(shù)學期望.
附:參考公式,其中.
臨界值表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)若的圖象與軸交于兩點,起,求的取值范圍;
(3)令, ,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com