【題目】“微信搶紅包”自2015年以來異;鸨谀硞微信群某次進(jìn)行的搶紅包活動中,若所發(fā)紅包的總金額為9元,被隨機(jī)分配為1.49元,1.31元,2.19元,3.40元,0.61元,共5份,供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于4元的概率是(
A.
B.
C.
D.

【答案】A
【解析】解:所發(fā)紅包的總金額為10元,被隨機(jī)分配為1.49元,1.81元,2.19元,3.41元,0.62元,0.48元, 共6份,供甲、乙等6人搶,每人只能搶一次,
基本事件總數(shù)n= =10,
其中甲、乙二人搶到的金額之和不低于4元的情況有:
(0.61,3.40),(1.49,3.40),(1.31,3.40),(2.19,3.40),共有4種,
∴甲、乙二人搶到的金額之和不低于4元的概率p= =
故選:A.
基本事件總數(shù)n= =10,再利用列舉法求出其中甲、乙二人搶到的金額之和不低于4元的情況種數(shù),帖經(jīng)能求出甲、乙二人搶到的金額之和不低于4元的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的長軸長為 ,左焦點(diǎn)的坐標(biāo)為(﹣2,0);
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)與x軸不垂直的直線l過C的右焦點(diǎn),并與C交于A、B兩點(diǎn),且 ,試求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B,C的坐標(biāo)分別為(﹣ ,0),( ,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.

(1)寫出重心G的坐標(biāo);
(2)求外心O′,垂心H的坐標(biāo);
(3)求證:G,H,O′三點(diǎn)共線,且滿足|GH|=2|OG′|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(Ⅰ)如果f(x)在x=0處取得極值,求k的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)k=0時,過點(diǎn)A(0,t)存在函數(shù)曲線f(x)的切線,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn).
(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動點(diǎn),MN與面SAB所成的角為θ,求sinθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=2,an+1=2an﹣1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=n(an﹣1),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=2,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求出圓C的直角坐標(biāo)方程;
(2)已知圓C與x軸相交于A,B兩點(diǎn),直線l:y=2x關(guān)于點(diǎn)M(0,m)(m≠0)對稱的直線為l'.若直線l'上存在點(diǎn)P使得∠APB=90°,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.

查看答案和解析>>

同步練習(xí)冊答案