m是一條直線,α,β是兩個不同的平面,以下命題正確的是(  )
A、若m∥α,α∥β,則m∥β
B、若m∥α,m∥β,則α∥β
C、若m∥α,α⊥β,則m⊥β
D、若m∥α,m⊥β,則α⊥β
考點:空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:由直線與平面的位置關(guān)系能判斷A的正誤;由直線與平面、平面與平面的位置關(guān)系能判斷B的正誤;由直線與平面的位置關(guān)系能判斷C的正誤;由平面與平面垂直的判定定理能判斷D的正誤.
解答: 解:若m∥α,α∥β,
則m∥β或m?β,故A錯誤;
若m∥α,m∥β,
則α∥β或α與β相交,故B錯誤;
若m∥α,α⊥β,
則m?β或m∥β或m與β相交,故C錯誤;
若m∥α,m⊥β,
則由平面與平面垂直的判定定理知α⊥β,故D正確.
故選:D.
點評:本題考查直線與平面、平面與平面的位置關(guān)系的判斷,是中檔題,解題時要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,a1=1,S5=25,若點P1(1,a3),P2(a4,-3),則直線P1P3的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則
3-i
2+i
等于( 。
A、-1+iB、-1-i
C、1+iD、1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC=BC=2,則
AB
BC
=( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x+
b
x
  (b∈R)
的導(dǎo)函數(shù)在區(qū)間(1,2)上有零點,則f(x)在下列區(qū)間單調(diào)遞增的是( 。
A、(-2,0)
B、(0,1)
C、(1,+∞)
D、(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,錯誤的個數(shù)是( 。
①一條直線與一個點就能確定一個平面   
②若直線a∥b,b?平面α,則a∥α
③若函數(shù)y=f(x)定義域內(nèi)存在x=x0滿足f'(x0)=0,則x=x0必定是y=f(x)的極值點
④函數(shù)的極大值就是最大值.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F(xiàn)分別為AD,CD的中點.
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的
中點.
(Ⅰ)若PA=PD,求證:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,點M在線段PC上,試
確定點M的位置,使二面角M-BQ-C大小為60°,并求出
PM
PC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,PA=AB=
6
,點E是棱PB的中點.
(Ⅰ)求證:直線AD∥平面PBC;
(Ⅱ) 求直線AD與平面PBC的距離;
(Ⅲ)若AD=3,求二面角A-EC-D的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案