【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中點(diǎn)表示十月的平均最高氣溫約為,點(diǎn)表示四月的平均最低氣溫約為.下面敘述不正確的是( )
A.各月的平均最高氣溫都在以上
B.六月的平均溫差比九月的平均溫差大
C.七月和八月的平均最低氣溫基本相同
D.平均最低氣溫高于的月份有5個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸,長度單位相同,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線過點(diǎn),傾斜角為.
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,寫出直線的參數(shù)方程的標(biāo)準(zhǔn)形式;
(2)已知直線交曲線于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,矩形所在平面與底面垂直,在直角梯形中,,,,.
(1)求證:平面;
(2)求證:平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)已知等比數(shù)列{bn}是遞增的,且首項(xiàng)b1和公比q分別是方程(x2﹣4)(x2﹣1)=0實(shí)根,求數(shù)列的前n項(xiàng)和為Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形為矩形,是的中點(diǎn),是的中點(diǎn),點(diǎn)在線段上且.
(1)證明平面;
(2)當(dāng)為多大時,在線段上存在點(diǎn)使得平面且與平面所成角為同時成立?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將n2個數(shù)排成n行n列的一個數(shù)陣,如圖:該數(shù)陣第一列的n個數(shù)從上到下構(gòu)成以m為公差的等差數(shù)列,每一行的n個數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列(其中m>0).已知a11=2,a13=a61+1,記這n2個數(shù)的和為S.下列結(jié)論正確的有( )
A.m=3B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P是圓F1:(x+1)2+y2=16上任意一點(diǎn),F2(1,0),線段PF2的垂直平分線與半徑PF1交于點(diǎn)Q,當(dāng)點(diǎn)P在圓F1上運(yùn)動時,記點(diǎn)Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)記曲線C與x軸交于A,B兩點(diǎn),M是直線x=1上任意一點(diǎn),直線MA,MB與曲線C的另一個交點(diǎn)分別為D,E,求證:直線DE過定點(diǎn)H(4,0).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某部門參加職業(yè)技能測試的2000名員工中抽取100名員工,將其成績(滿分100分)按照,,,分成4組,得到如圖所示的頻率分布直方圖.
(1)估計該部門參加測試員工的成績的中位數(shù);
(2)估計該部門參加測試員工的平均成績.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為4,且過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓上一點(diǎn),過點(diǎn)作軸的垂線,垂足為,取點(diǎn),連接,過點(diǎn)作的垂線交軸于點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn),作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點(diǎn)?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com