【題目】如圖,在四棱錐中,平面,四邊形為矩形,是的中點,是的中點,點在線段上且.
(1)證明平面;
(2)當為多大時,在線段上存在點使得平面且與平面所成角為同時成立?
【答案】(1)見解析;(2)
【解析】
(1)以為原點,為軸,為軸,為軸,建立空間直角坐標系,
設(shè),,,利用向量法即可證明平面.
(2)取中點,連結(jié),易得平面,由,轉(zhuǎn)化為與平面所成角為,求出平面的法向量,根據(jù)線面角公式即可得到,從而得到當時,在線段上存在中點,使得平面,且與平面所成角為同時成立.
(1)在四棱錐中,平面,四邊形為矩形,
是的中點,是的中點,點在線段上且.
以為原點,為軸,為軸,為軸,建立空間直角坐標系,
設(shè),,,
則,,,,
,,
,平面的法向量,
因為,平面,
所以平面.
(2)
取中點,連結(jié),因為是中點,
所以,平面,
因為與平面所成角為同時成立,
所以與平面所成角為,
由(1)得,,,,
,,
設(shè)平面的法向量,
則,取,得,
因為與平面所成角為,
.
解得,即,
所以當時,在線段上存在中點,
使得平面,且與平面所成角為同時成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知平面向量滿足,則以下說法正確的有( )個.
①;
②對于平面內(nèi)任一向量,有且只有一對實數(shù),使;
③若,且,則的范圍為;
④設(shè),且在處取得最小值,當時,則;
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的右焦點坐標為,且點在C上.
(1)求橢圓的方程;
(2)過點的直線l與C交于M,N兩點,P為線段MN的中點,A為C的左頂點,求直線AP的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣x+1,g(x)=ex﹣ax,a∈R.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若g(x)≥1在R上恒成立,求a的值;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖.圖中點表示十月的平均最高氣溫約為,點表示四月的平均最低氣溫約為.下面敘述不正確的是( )
A.各月的平均最高氣溫都在以上
B.六月的平均溫差比九月的平均溫差大
C.七月和八月的平均最低氣溫基本相同
D.平均最低氣溫高于的月份有5個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的方程為.
(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程和直線的極坐標方程;
(2)在(1)的條件下,直線的極坐標方程為,設(shè)曲線與直線的交于點和點,曲線與直線的交于點和點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求和的直角坐標方程;
(2)已知直線與軸交于點,且與曲線交于,兩點(在第一象限),則的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com