設(shè)分別是橢圓的左、右焦點(diǎn),點(diǎn)P在橢圓上,若△為直角三角形,則△的面積等于__   __.
6

試題分析:由題意可知若P點(diǎn)為短軸端點(diǎn)時(shí),此時(shí)角為最大值,故故不妨令帶入橢圓方程可知
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓方程為,過右焦點(diǎn)斜率為1的直線到原點(diǎn)的距離為.

(1)求橢圓方程.
(2)已知為橢圓的左右兩個(gè)頂點(diǎn),為橢圓在第一象限內(nèi)的一點(diǎn),為過點(diǎn)且垂直軸的直線,點(diǎn)為直線與直線的交點(diǎn),點(diǎn)為以為直徑的圓與直線的一個(gè)交點(diǎn),求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),右準(zhǔn)線為,離心率為.若直線與橢圓交于不同的兩點(diǎn)、,以線段為直徑作圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若圓軸相切,求圓被直線截得的線段長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn),

(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,為其右焦點(diǎn),離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn),問是否存在直線,使與橢圓交于兩點(diǎn),且.若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓 ,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,且其短軸上的一個(gè)端點(diǎn)到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程;
(Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)作直線,使得與橢圓都只有一個(gè)交點(diǎn),試判斷是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與曲線的交點(diǎn)為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1(-c, 0), F2(c, 0)是橢圓(a>b>0)的兩個(gè)焦點(diǎn),P是以|F1F2|為直徑的圓與橢圓的一個(gè)交點(diǎn),且∠PF1F2=5∠PF2F1,則該橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P(4, 4),圓C:與橢圓E:有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.

(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案