已知橢圓,為其右焦點(diǎn),離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn),問(wèn)是否存在直線,使與橢圓交于兩點(diǎn),且.若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ);(Ⅱ)存在這樣的直線,其斜率的取值范圍是

試題分析:(Ⅰ)根據(jù)橢圓的參數(shù)之間的關(guān)系容易求解;(Ⅱ)假設(shè)存在這樣的直線滿足題意,并設(shè).根據(jù),可以得到的關(guān)系式.由,得,利用一元二次方程的根與系數(shù)的關(guān)系,可以轉(zhuǎn)化為的關(guān)系,再利用判別式,即可判斷是否存在這樣的直線,以及存在時(shí)的取值范圍.
試題解析:
(Ⅰ)由題意知:,∵離心率,∴,,
故所求橢圓C的標(biāo)準(zhǔn)方程為.                        4分
(Ⅱ)假設(shè)存在這樣的直線滿足題意,并設(shè)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021048134964.png" style="vertical-align:middle;" />,,
所以:

                            5分
,得
根據(jù)題意,,得,
,
所以                         8分
,
解得,或.                        10分
當(dāng)時(shí),),顯然符合題意;
當(dāng)時(shí),代入,得,解得
綜上所述,存在這樣的直線,其斜率的取值范圍是.          13分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左右焦點(diǎn)分別為,且經(jīng)過(guò)點(diǎn),為橢圓上的動(dòng)點(diǎn),以為圓心,為半徑作圓.
(1)求橢圓的方程;
(2)若圓軸有兩個(gè)交點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),過(guò)F1作與x軸不重合的直線l交橢圓于A,B兩點(diǎn).
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,為坐標(biāo)原點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:的四個(gè)頂點(diǎn)恰好是一邊長(zhǎng)為2,一內(nèi)角為的菱形的四個(gè)頂點(diǎn).
(I)求橢圓C的方程;
(II)若直線y =kx交橢圓C于A,B兩點(diǎn),在直線l:x+y-3=0上存在點(diǎn)P,使得 ΔPAB為等邊三角形,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知B、C是兩個(gè)定點(diǎn),∣BC∣=6,且△ABC的周長(zhǎng)等于16,則頂點(diǎn)A的軌跡方程為                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為橢圓的兩個(gè)焦點(diǎn),P為橢圓上,則此橢圓離心率的取值范圍是                                               (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)分別是橢圓的左、右焦點(diǎn),點(diǎn)P在橢圓上,若△為直角三角形,則△的面積等于__   __.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若方程表示橢圓,則的取值范圍是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
(Ⅰ)設(shè)橢圓的半焦距,且成等差數(shù)列,求橢圓的方程;
(Ⅱ)設(shè)(1)中的橢圓與直線相交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案